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Preface
Introduction

These are my class notes for C1 to C4 which my Dad has transcribed on to the computer for me, although he has
gone a bit OTT with them! My cousin has been studying the AQA syllabus and so some of the chapters have
been marked to show the differences.

Although a lot of my hand written mistakes have been corrected - there may be a few deliberate errors still in the
script. If you find any, then please let us know so that we can correct them.

I have tried to put a * next to formulæ that are on the Formulæ sheet and a ** if I need to learn something.

Finally, there is no better way of learning than doing lots and lots of practise papers. Not least to get the hang of
how the questions are worded and how you are often expected to use information from the previous part of a
question. Sometimes this is not very obvious.

Thanks to Fritz K for his comments and corrections.

Kathy

Aug 2012
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Required Knowledge

Algebra

A good grounding in handling algebraic expressions and equations, including the expansion of brackets, collection of
like terms and simplifying is required. Revise how to deal with basic fractions - yes really. Can you do  without
using the calculator? How is your mental maths? 

7
16 − 1

64

Studying for A Level

According to the papers, everyone seems to have achieved a raft of A*’s at GCSE, and you will be forgiven for thinking
that A level can’t be that much harder. Sorry, but you are in for a rude shock.

In maths alone you will have 6 modules to complete, and the first AS exams will probably be in the January after your
first term of 6th form. Take note of these pointers:

j Compared to GCSE, the difficulty of work increases with many new concepts introduced.

j The amount of work increases, and the time to do the work is limited.

j The AS exams account for 50% of the marks and these exams are easier than the A2 exams. It is imperative to
get the highest mark possible in AS, and avoid having to resit them.

j There is no substitute for doing lots and lots of practise papers.

By the time many students wake up to the reality of the work required, it may be too late to catch up without the added
pressure of the inevitable resits.

Meaning of symbols

In addition to the usual mathematical symbols, ensure you have these committed to memory:

≡   is identical to

≈   is approximately equal to

 implies⇒
⇐ is implied by

⇔ implies and is implied by

   is a member of∈
:    is such that

Sets of Numbers

The ‘open face’ letters N, Z, Q, R, C are often used to define certain infinite sets of numbers. Unfortunately, there is
no universal standard definition for the natural and counting numbers. Different authors have slight differences between
them. The following should suffice for A level studies.

Z+ + the counting numbers — whole numbers (from 1 upwards)

N the natural numbers —  (0, plus all the counting numbers)0,  1,  2,  3…
Z the integers — all whole numbers, includes negatives numbers, and all the natural numbers above

(from the German Zahlen, meaning numbers)

R the real numbers — all the measurable numbers which includes integers above and
the rational & irrational numbers (i.e. all fractions & decimals)

Q the rational numbers — from the word ratio, includes any number that can be expressed as a 
fraction with integers top and bottom, (this includes recurring decimals). Q stands for quotient

the irrational numbers — any number that can’t be expressed as a fraction, e.g. π,  2

C the complex numbers —  e.g.   (imaginary number)a + bi i = −1where 

Irrational numbers, when expressed as a decimal, are never ending, non repeating decimal fractions. Any irrational
number that can be expressed exactly as a root term, such as , is called a surd.2

A venn diagram may be helpful to sort them out.

17
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Complex Numbers    C

Real Numbers    R

Rational Numbers    Q     …, −¾, −½, ¼… 

Integer Numbers    Z     …, −3, −2, −1

Natural Numbers    N     0

Counting Numbers    Z+    1, 2, 3,

Irrational Numbers     p e Ú 2

Calculators in Exams

Check with exam board!

You cannot have a calculator that does symbolic algebra, nor can you have one that you have preprogrammed with your
own stuff.

For A-Level the Casio FX-991 ES calculator is a excellent choice, and one that has a solar cell too. 

If you want a graphical one, then the Texas TI 83+ seems to be highly regarded, although I used an older Casio one.

Get a newer version with the latest natural data entry method.

I prefer a Casio one so that data entry is similar between the two calculators.

Exam Tips

j Read the examiners reports into the previous exams. Very illuminating words of wisdom buried in the text.

j Write down formulae before substituting values.

j You should use a greater degree of accuracy for intermediate values than that asked for in the question. Using
intermediate values to two decimal places will not result in a correct final answer if asked to use three decimal
places.

j  For geometrical transformations the word translation should be used rather than “trans” or “shift” etc.

j When finding areas under a curve a negative result may be obtained. However, the area of a region is a positive
quantity and an integral may need to be interpreted accordingly.

j When asked to use the Factor Theorem, candidates are expected to make a statement such as “therefore (x – 2) is
a factor of p(x)” after showing that p(2) = 0.

j When asked to use the Remainder Theorem no marks will be given for using long division.
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Module C1
Core 1 Basic Info

Indices and surds; Polynomials; Coordinate geometry and graphs; Differentiation.

The C1 exam is 1 hour 30 minutes long and normally consists of 10 question. The paper is worth 72 marks (75 AQA).

No calculator allowed for C1

Section A (36 marks) consists of 5—7 shorter questions worth at most 8 marks each.

Section B (36 marks) consists of 3 to 4 longer questions worth between 11—14 marks each.

OCR Grade Boundaries.
These vary from exam to exam, but in general, for C1, the approximate raw mark boundaries are:

Grade 100% A B C

Raw marks 72 57 ± 3 50 ± 3 44 ± 3

UMS % 100% 80% 70% 60%

The raw marks are converted to a unified marking scheme and the UMS boundary figures are the same for all exams.

C1 Contents

Module C1 19

1 • C1 • Indices & Power Rules Update v2 (Dec 12) 23

2 • C1 • Surds    Update v4 (Jan 13) 29

3 • C1 • Algebraic Fractions 35

4 • C1 • Straight Line Graphs Update v1 (Jan 13) 39

5 • C1 • Geometry of a Straight Line Update v1 (Jan 13) 51

6 • C1 • The Quadratic Function Update v1 (Nov 12) 59

7 • C1 • Factorising Quadratics Update v1 (Sep 12) 61

8 • C1 • Completing the Square Update v2 (Nov 12) 75

9 • C1 • The Quadratic Formula Update v2 (Nov 12) 83

10 • C1 • The Discriminant   Update v3 (Nov 12) 87

11 • C1 • Sketching Quadratics Update v1 (Nov 12) 93

12 • C1 • Further Quadratics Update v1 (Dec 12) 97

13 • C1 • Simultaneous Equations 103

14 • C1 • Inequalities    Update v1 105

15 • C1 • Standard Graphs I   Update v2 (Jan 2013) 111

16 • C1 • Graph Transformations Update v1 (Dec 13) 127

17 • C1 • Circle Geometry Update v3 (Dec 12) 137

18 • C1 • Calculus 101 151

19 • C1 • Differentiation I 153

20 • C1 • Practical Differentiation I Update v1 (Mar 2013) 163

Module C2 177

Module C3 307

Module C4 451

Disclaimer

These are my class notes for C1 to C4 which my Dad has transcribed on to the computer for me, although he has gone a
bit OTT with them! My cousin has been studying the AQA syllabus and so some of the chapters have been marked to show
the differences. Although a lot of my hand written mistakes have been corrected - there may be a few deliberate errors still
in the script. If you find any, then please let us know so that we can correct them. 

Kathy, Feb 2013
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C1 Assumed Basic Knowledge

You should know the following formulae, (many of which are NOT included in the Formulae Book).

1 Basic Algebra

Difference of squares is always the sum times the difference:

a
2 − b

2 = (a + b) (a − b)

       a2 − b = (a + b) (a − b)

2 Quadratic Equations

ax
2 + bx + c = 0  x =

−b ± b2 − 4ac

2a
has roots

      b
2

− 4acThe Discriminant is

3 Geometry

     y = mx + c

     y − y1 = m (x − x1)

     m =
rise

run
=

y2 − y1

x2 − x1

     m1 m2 = −1

     y − y1 =
y2 − y1

x2 − x1

(x − x1)

     
y − y1

y2 − y1

=
x − x1

x2 − x1

Hence:

  = (x2 − x1)2 + (y2 − y1)2Length of line between 2 points

  = (x1 + x2

2
,

y1 + y2

2 )Co-ordinate of the Mid point 

4 Circle

A circle, centre (a, b) and radius r, has equation

(x − a)2 + (y − b)2 = r
2

 

5 Differentiation and Integration

Function  f (x) Dif f erential dy
dx = f ′ (x)

axn anxn − 1

f (x) + g (x) f ′ (x) + g′ (x)

Function  f (x) Integral ∫ f (x) dx

axn
a

n + 1
 xn + 1 + c n ≠ −1

f ′ (x) + g′ (x) f (x) + g (x) + c

 Ax = ∫
b

a

y dx (y ≥ 0)Area under curve      
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 Module C1

C1 Brief Syllabus

1 Indices & Surds

j understand rational indices (positive, negative & zero), use laws of indices with algebraic problems

j recognise the equivalence of surd and index notation (e.g. )a = a
1
2

j use the properties of surds, including rationalising denominators of the form a + b

2 Polynomials

j carry out addition, subtraction, multiplication, expansion of brackets, collection of like terms and simplifying

j completing the square for a quadratic polynomial

j find and use the discriminant of a quadratic polynomial

j solve quadratic equations, and linear & quadratic inequalities, (one unknown)

j solve by substitution a pair of simultaneous equations of which one is linear and one is quadratic

j recognise and solve equations in x which are quadratic in some function of x, e.g. 8x
2
3 − x

1
3 + 4 = 0

3 Coordinate Geometry and Graphs

j find the length, gradient and mid-point of a line-segment, given the coordinates of the endpoints

j find the equation of a straight line

j understand the relationship between the gradients of parallel and perpendicular lines

j be able to use linear equations, of the forms y = mx + c,  y − y1 = m (x − x1) ,  ax + by + c = 0

j understand that the equation  represents the circle with centre (a, b) and radius r(x − a)2 + (y − b)2 = r2

j use algebraic methods to solve problems involving lines and circles, including the use of the equation of a circle
in expanded form . Know the angle in a semicircle is a right angle; the
perpendicular from the centre to a chord bisects the chord; the perpendicularity of radius and tangent

x2 + y2 + 2px + 2qy + r = 0

j understand the relationship between graphs and associated algebraic equations, use points of intersection of
graphs to solve equations, interpret geometrically the algebraic solution of equations (to include, in simple cases,
understanding of the correspondence between a line being tangent to a curve and a repeated root of an equation) 

j sketch curves with equations of the form: 

j , where n is a positive or negative integer and k is a constanty = kxn

j , where k is a constanty = k x

j , where a, b, c are constantsy = ax2 + bx + c

j  where  is the product of at most 3 linear factors, not necessarily all distincty = f (x) f (x)

j understand and use the relationships between the graphs of
, where a and k are constants, and express the

transformations involved in terms of translations, reflections and stretches.
y = f (x) , y = kf (x) ,  y = f (x) + a,  y = f (x + a) , y = f (kx)

4 Differentiation

j understand the gradient of a curve at a point as the limit of the gradients of a suitable sequence of chords (an
informal understanding only is required, differentiation from first principles is not included)

j understand the ideas of a derived function and second order derivative, and use the standard notations

f ′ (x) ,  
dy

dx
,  f ′′ (x) ,  

d2y

dx2

j use the derivative of xn (for any rational n), together with constant multiples, sums and differences

j apply differentiation to gradients, tangents and normals, rates of change, increasing and decreasing functions, and
the location of stationary points (the ability to distinguish between maximum points and minimum points is
required, but identification of points of inflexion is not included)
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1 • C1 • Indices & Power Rules

1.1 The Power Rules - OK

Recall that:

 is read as “2 raised to the power of 10” or just “2 to the power of 10” 
where 2 is the base and 10 is the index, power or exponent.

210

The Law of Indices should all be familiar from GCSE or equivalent. Recall:

a
m × a

n = a
m + n  Law À

am

an
= a

m − n  Law Á

(am)n
= a

mn      Law Â

a
0 = 1   Law Ã

a
−n =

1

an
        Law Ä

n
a = a

1
n         Law Å

(ab)m = a
m
b

m

(a

b)
n

=
an

bn

a
m
n = (am)

1
n = n

am (n ≠ 0)

a
1

mn = mn
a = m n

a (m ≠ 0,  n ≠ 0)

(a

b)
−n

= (b

a)
n

(a

b)
−1

=
b

a

From the above rules, these common examples should be remembered:

a = 2 a = a
1
2         

3
a = a

1
3 

1

a
= a

−1

a
−1

2 =
1

a
1
2

=
1

a

a
1
2 × a

1
2 = a

1 = a

a
1
3 × a

1
3 × a

1
3 = a

1 = a

a
3
2 = a

1
2 × a

1
2 × a

1
2 = a a

( a)2
= a  ( n

a)n
= a

a
0 = 1  a

1 = a
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1.2 Examples

1
Solve for x:  

6x × 65

36
= 6

9

 
6x × 65

62
= 6

9 ⇒  6
x + 5 − 2 = 6

9   

 x + 3 = 9  ⇒  x = 6Compare indices

2 Solve for x and y with the following simultaneous equations:

5
x × 25

2y = 1  3
5x × 9

y =
1

9
and

5
x × (52)2y

= 5
0 ⇒  5

x × 5
4y = 5

0

∴ x + 4y = 0

3
5x × 9

y =
1

9
 ⇒  3

5x × 3
2y = 3

−2

∴ 5x + 2y = −2

  x = −
1

6
  and  y =

1

24
Hence:

3
   4a

2
b × (3ab

−1)−2
Simplify:

4a
2
b × 3

−2
a

−2
b

2 ⇒  
4

9
a

0
b

3 ⇒  
4

9
b

3

4
   (MLT−2

L2 ) ÷ (LT−1

L
)  ⇒  (MT−2

L
) ÷ T

−1Simplify:

 (MLT−2

L2 ) ÷
1

T
  ⇒  (MT−2

L
) × T  ⇒  

M

LT

5 Solve for x:    2
x + 1 ÷ 4

x + 2 = 8
x + 3

  2
x + 1 ÷ (22)x + 2

= (22)x + 3
Express as powers of 2

2
x + 1 ÷ 2

2x + 4 = 2
3x + 9

2
x + 1 − (2x + 4) = 2

3x + 9

2
−x − 3 = 2

3x + 9

   − x − 3 = 3x + 9      Compare indices

∴     x = −3

6 Simplify

Ex 1  2x x = 2x × x
1
2 = 2x

11
2 = 2x

3
2 (usually left in top heavy form)

Ex 1     
6

3
x

=
6

x
1
3

= 6x
−1

3

Ex 1  
1

x2 x
=

1

x
5
2

= x
−5

2

24 ALevelNotesv8Erm 07-Apr-2013



1 • C1 •  Indices & Power Rules

7 Evaluate

Ex 1   (1

8)
1
3

=
1

3 8
=

1

2
            (Cube root)

Ex 2   (64)−1
3 ⇒ ( 1

64)
1
3

⇒
1

4
        (Cube root)

Ex 3   (1

4)
−1

2

⇒ 4
1
2 ⇒ ± 2            (Square root)

Ex 4      16
−3

4 ⇒ ( 1

16)
3
4

⇒ (1

2)
3

⇒
1

8
    (4-th root, cubed)

Ex 5   (21

4)
−1

2

⇒ (9

4)
−1

2

⇒ (4

9)
1
2

⇒
2

3

8 Solve

x
3
4 = 27

x = 27
4
3

x = 3
4 = 81

9
Solve: 5x

1
3 = x

2
3 + 4

    x
2
3 − 5x

1
3 + 4 = 0

x
1
3  y = x

1
3This is a quadratic in  so let

y
2 − 5y + 4 = 0 ⇒  (y − 1) (y − 4) = 0 

y = 1  4or

∴ x
1
3 = 1  4or

∴ x = 1
3  43 ⇒ 1,  64or

10 Solve: 2
2x

− 5 (2x + 1) + 16 = 0

Solution:
This should be a quadratic in 2x but middle term needs simplifying:

2
x + 1 = 2

x × 2        

∴ 5 (2x + 1) = 5 × 2
x × 2 = 10 (2x)

 (2x)2
− 10 (2x) + 16 = 0Hence: 

 y = 2
x  y

2 − 10y + 16 = 0Let 

(y − 2) (y − 8) = 0

y = 2  8or

2
x = 2  8or

2
x = 2

1  23
or

∴  x = 1  3or
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11 Solve:

10
p = 0.1

=
1

10
= 10

−1

∴ p = −1

12 Solve:

         135
x × 5

5x = 75

Solution:
Convert all numbers to prime factors:

135 = 3
3 × 5        

75 = 3 × 5
2

∴ (33 × 5)x
× 5

5x = 3 × 5
2

3
3x × 5

x × 5
5x = 3 × 5

2

3
3x × 5

6x = 3
1 × 5

2

 ∴ 3x = 1 & 6x = 2     Compare indices for each base

x =
1

3

13 Solve:

27x + 2 = 9
2x − 1

Solution:

(33)x + 2
= (32)2x − 1

3
3x + 6 = 3

4x − 2

∴ 3x + 6 = 4x − 2

6 + 2 = 4x − 3x

x = 8

14 Evaluate: 8
2
3

Three ways to achieve this:

  8
2
3 = (82)

1
3 ⇒ 64

1
3 = 4  (1)

(2)   8
2
3 = 8

2
3 × 8

2
3 ⇒ 2 × 2 = 4

(3)        8
2
3 = ( 3 8)2

⇒ 2
2 = 4

15
Simplify: (3x2y3z6

−6y5 )
0

     (3x2y3z6

−6y5 )
0

= 1

16
Simplify: (−6y

5
z

3)0

     (−6y
5
z

3)0
= 1
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1 • C1 •  Indices & Power Rules

17 Evaluate:

(27
1
3 + 25

1
2)

1
3

          

Solution:

  (27
1
3 + 25

1
2)

1
3

⇒ (3 + 5)
1
3        

= (8)
1
3

= 2

18 Evaluate:

16 4.5= 16
9
2

= (16
1
2)9

= (4)9

= 16 × 16 × 16 × 16 × 4

= 65536

19 Show that the function:

f (x) = ( x + 4)2
+ (1 − 4 x)

can be written as: 

f (x) = ax + b

Solution:

   f (x) = ( x + 4)2
+ (1 − 4 x)

= (x + 8 x + 16) + (1 − 8 x + 16x)
= 17x + 17

20 Evaluate:

(3 3

16
+ 4

3

8)
−1

2

        

Solution:
   

   (3 3

16
+ 4

3

8)
−1

2

= (7 9

16)
−1

2

   7
9

16
≡ 7 +

9

16
Recall that: 

= (112

16
+

9

16)
−1

2

= (121

16 )
−1

2

= ( 16

121)
1
2

=
16

121

=
4

11
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21 Solve:

(49k
4)

1
2 = 63

Solution:

7k
2 = 63

k
2 =

63

7
= 9

k = 3

22 Solve:

3 (x)−1
2 − 4 = 0

Solution:
3

x
= 4

     
3

4
= x

       x = (3

4)
2

     =
9

16
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2 • C1 • Surds

2.1 Intro to Surds

A surd is any expression which contains a square or cube root, and which cannot be simplified to a rational
number, i.e. it is irrational.

Recall the set of real numbers includes rational & irrational numbers:

R the real numbers — all the measurable numbers which includes integers and
the rational & irrational numbers (i.e. all fractions & decimals)

Q the rational numbers — from the word ratio, includes any number that can be expressed as a 
ratio or fraction with integers top and bottom, (this includes all terminating & recurring
decimals).
(Q stands for quotient)

NS the irrational numbers — any number that cannot be expressed as a fraction, e.g. 
(includes the square root of any non square number, & the cube root of any non cube number)
(NS − there is No Symbol for irrational numbers)

π,  2

Irrational numbers, when expressed as a decimal, are never ending, non repeating decimal fractions with no
pattern. Any irrational number that can be expressed exactly as a root, such as , is called a surd.2

It is often convenient to leave an answer in surd form because:

j surds can be manipulated like algebraic expressions

j surds are exact − use when a question asks for an exact answer!

j the decimal expansion is never wholly accurate and can only be an approximation

j a surd will often reveal a pattern that the decimal would hide

 

The word ‘surd’ was often used as an alternative name for ‘irrational’, but it is now used for any root that is
irrational.

Some examples:

Number Simplified Decimal Type Root is :

2 2 1·414213562… Irrational Surd

3 3 1·732050808… Irrational Surd

9    3 3·0 Integer

4

9
   

2

3
0·666’ Rational

3 13 3 13 2·351334688… Irrational Surd

3 64   4 4·0 Integer

4 625 5 5·0 Integer

Prime No Irrational Surd

π π 3·141592654… Irrational

e e 2·718281828… Irrational

In trying to solve questions involving surds it is essential to be familiar with square numbers thus:

1,  4,  9,  16,  25,  36,  49,  64,  81,  100,  121,  144…

and with cube numbers thus:

1,  8,  27,  64,  125,  216…
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2.2 Handling Surds — Basic Rules

These rules are useful when simplifying surds:

         x × x = ( x)2
= x

Rearranging gives some useful results:

x =
x

x

1

x
=

x

x

From the law of indices

Law 1            x × y = xy

Law 2         
x

y
=

x

y

Also

x = x2 

a c + b c = (a + b) c

j If it is a root and irrational, it is a surd, e.g. 3,  3 6

j Not all roots are surds, e.g. 9,  3 64

j Square roots of integers that are square numbers are rational

j The square root of all prime numbers are surds and irrational

2.3 Factorising Surds

In factorising a surd, look for square numbers that can be used as factors of the required number. Recall the
square numbers of 4, 9, 16, 25, 36, 49, 64…

2.3.1  Example:

Simplify:

Ex 1   54 = 9 × 6 = 9 × 6 = 3 6

Ex 2   50 = 25 × 2 = 5 2

2.4 Simplifying Surds

Since surds can be handled like algebraic expressions, you can easily multiply terms out or add & subtract ‘like’
terms. 

2.4.1  Example:

Simplify the following:

Ex 1   12 3 = 36 = 6

Ex 2   
27

3
=

9 × 3

3
=

3 3

3
= 3

Ex 3   28 + 63 = 2 7 + 3 7 = 5 7

Ex 4   3 16 = 3 2 × 8 = 2 3
2
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2 • C1 •  Surds

2.5 Multiplying Surd Expressions

Handle these in the same way as expanding brackets in algebraic expressions.

2.5.1  Example:

Simplify (1 − 3) (2 + 4 3)
Solution:

(1 − 3) (2 + 4 3) = 2 + 4 3 − 2 3 − 4 3 3

= 2 + 2 3 − 4 × 3

= −10 + 2 3

2.6 Surds in Exponent Form

If you are a bit confused by the surd form, try thinking in terms of indices:

E.g.
Ex 1  

x

x
=

x

x
1
2

    = x × x
−1

2

    = x
1
2

    = x

Ex 2  
x

x
=

x
1
2

x

    = x
1
2 × x

−1

    = x
−1

2 =
1

x
1
2

    =
1

x 
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2.7 Rationalising Denominators (Division of Surds)

By convention, it is normal to clear any surds in the denominator. This is called rationalising the denominator,
and is easier than attempting to divide by a surd. 

In general, simplify any answer to give the smallest surd.

There are three cases to explore:

j A denominator of the form a
k

a

j A denominator of the form a ± b
k

a + b

j A denominator of the form a ± b
k

a − b

The first case is the simplest and just requires multiplying top and bottom by the surd on the bottom:

2.7.1  Example:

Ex 1   
7

3
=

7

3
×

3

3
=

7 3

3

Ex 2   
3 5

3
=

3 5

3
×

3

3
=

3 15

3
= 15

The second case has a denominator of the form , which requires you to multiplying top and bottom by
. So if the denominator has the form , then multiply top and bottom by  , which gives us a

denominator of the form . The section on the differences of squares, above, will show why you do this.
Obviously, if the denominator is  then multiply top and bottom by .

a ± b
a ∓ b a + b a − b

a2 − b
b − c b + c

2.7.2  Example:

Ex 1   
1

3 − 2
=

1

3 − 2
×

3 + 2

3 + 2
=

3 + 2

9 − 2
=

3 + 2

7

Ex 2   
2 2

3 − 5
=

2 2

3 − 5
×

3 + 5

3 + 5
=

2 6 + 2 10

3 − 5
= − ( 6 + 10)

The third case has a denominator of the form , which requires you to multiplying top and bottom by
, which gives us a denominator of the form .

a ± b
a ∓ b a − b

2.7.3  Example:

1

3 − 2
=

1

3 − 2
×

3 + 2

3 + 2
=

3 + 2

3 − 2
= 3 + 2
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2 • C1 •  Surds

2.8 Geometrical Applications

2.8.1  Example:

1 Find tan θ :

Solution:

 tan θ =
3

3 + 5

 tan θ =
3

3 + 5
×

3 − 5

3 − 5

 tan θ =
9 − 3 5

9 − 5
=

9 − 3 5

4

3
q

3 + Ú5

2 Find:

x,  cos θ,  z,  y
4

q
z

y

x

3

Solution:

Find x  4
2 = x

2 + 3
2 ⇒ 16 = x

2 + 9

 ∴   x = 7

Find Cos θ  Cos θ =
7

4

Find z  z
2 = 4

2 + y
2

   Cos θ =
4

z
  ∴   

4

z
=

7

4

    z =
16

7
=

16 7

7

Find y     y = (16 7

7
)2

− 16 =
256

7
− 16

   y =
256

7
−

112

7
=

144

7
=

12

7

   y =
12 7

7

3 Express in the form of (3 − 5)2  a + b 5

Solution:

(3 − 5)2
= 9 − 3 5 − 3 5 + 5

= 14 − 6 5

∴ a = 14,  b = −6
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2.9 Topical Tip

Whenever an exam question asks for an exact answer, leave the answer as a surd. Don’t evaluate with a
calculator (which you can’t have in C1:-)

2.10 The Difference of Two Squares

This is a favourite of examiners. 

Note the LH & RH relationships — the difference of squares (LHS) always equals the sum times the difference
(RHS):

a
2 − b

2 = (a + b) (a − b)

This will always result in an rational number.

A common trick exam question is to ask you to factorise something like: .(a2 − 1)

2.10.1  Example:

1 Simplify ( 5 + 2) ( 5 − 2)
Solution:

( 5 + 2) ( 5 − 2) = ( 5)2
− 2

2

= 5 − 4 = 1

2 A common trick question is to ask you to factorise .(a2 − 1)

Solution:

(a2 − 1) = (a2 − 1
2) = (a + 1) (a − 1)

3 The difference of squares can be used to calculate numerical expressions such as:

Solution:

(25
2

− 15
2) = (25 + 15) (25 − 15)

       = 40 × 10 = 400

2.11 Heinous Howlers

Do not confuse yourself.

7 × 7 ≠ 49   7 × 7 = 7 c b

a + b ≠ a + b c

(a + b)2 ≠ a
2 + b

2  c
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3 • C1 • Algebraic Fractions

3.1 Handling Algebra Questions

Two golden rules:

j If a polynomial is given e.g. a quadratic, FACTORISE IT

j If bracketed expressions are given e.g.  EXPAND THE BRACKETS(x − 4)2

3.2 Simplifying Algebraic Fractions

The basic rules are:

j If more than one term in the numerator (top line): put it in brackets

j Repeat for the denominator (bottom line)

j Factorise the top line

j Factorise the bottom line

j Cancel any common factors outside the brackets and any common brackets

Remember:

j B — Brackets

j F — Factorise

j C — Cancel

3.2.1  Example:

1 x − 3

2x − 6

 
x − 3

2x − 6
⇒
(B) (x − 3)

(2x − 6)
⇒
(F) (x − 3)

2 (x − 3)
⇒
(C) (x − 3) — —

2 (x − 3) — —
=

1

2

2 2x − 3

6x2 − x − 12

 
2x − 3

6x2 − x − 12
⇒
(B) (2x − 3)

(6x2 − x − 12)
⇒
(F) (2x − 3)

(2x − 3) (3x + 4)
⇒
(C) (2x − 3) — —

(2x − 3) — — (3x + 4)

    =
1

(3x + 4)

3
3x2 − 8x + 4

6x2 − 7x + 2

 
3x2 − 8x + 4

6x2 − 7x + 2
⇒

(3x2 − 8x + 4)
(6x2 − 7x + 2)

⇒
(x − 2) (3x − 2)

(2x − 1) (3x − 2)
=

(x − 2)
(2x − 1)

4 x − 2

2 − x

Watch out for the change of sign:

 
x − 2

2 − x
⇒

(x − 2)
(2 − x)

⇒
− (2 − x)
(2 − x)

= −1
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3.3 Adding & Subtracting Algebraic Fractions

The basic rules are the same as normal number fractions (remember 11+ exams???):

j Put terms in brackets for both top and bottom lines

j Factorise top & bottom lines, if necessary

j Find common denominator

j Put all fractions over the common denominator

j Add/subtract numerators

j Simplify

3.3.1  Example:

1 1

x
−

2

3

    
1

x
−

2

3
⇒

3

3x
−

2x

3x
=

3 − 2x

3x

2 3

x + 2
−

6

2x − 1

Solution:
3

(x + 2)
−

6

(2x − 1)
=

3 (2x − 1)
(x + 2) (2x − 1)

−
6 (x + 2)

(x + 2) (2x − 1)

=
3 (2x − 1) − 6 (x + 2)

(x + 2) (2x − 1)

=
6x − 3 − 6x + 12

(x + 2) (2x − 1)

=
−15

(x + 2) (2x − 1)

3 31x − 8

2x2 + 3x − 2
−

14

x + 2

Solution:
(31x − 8)

(2x2 + 3x − 2)
−

14

(x + 2)
=

(31x − 8)
(x + 2) (2x − 1)

−
14

(x + 2)

=
(31x − 8)

(x + 2) (2x − 1)
−

14 (2x − 1)
(x + 2) (2x − 1)

=
(31x − 8) − 14 (2x − 1)

(x + 2) (2x − 1)

=
31x − 8 − 28x + 14

(x + 2) (2x − 1)

=
(3x + 6)

(x + 2) (2x − 1)

=
3 (x + 2)

(x + 2) (2x − 1)

=
3

2x − 1
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3 • C1 •  Algebraic Fractions

3.4 Multiplying & Dividing Algebraic Fractions

Basic rules are:

j Multiplication:

j Simplify if possible

j Multiply out:  
top × top

bottom × bottom

j Simplify

j Division

j Turn second fraction upside down:  
a

b
÷

c

d
=

a

b
×

d

c

j Follow multiplication rules above

3.4.1  Example:

1 2

x
×

x2 − 2x

x − 2

Solution:

2

x
×

x2 − 2x

x − 2
=

2

x⁄
×

x⁄ (x − 2) — —

(x − 2) — —
= 2

2 x − 2

x2 − 4x + 3
÷

x

2x2 − 7x + 3

Solution:

x − 2

x2 − 4x + 3
÷

x

2x2 − 7x + 3
=

(x − 2)
(x2 − 4x + 3)

×
(2x2 − 7x + 3)

x

=
(x − 2)

(x − 1) (x − 3) — —
×

(x − 3) — — (2x − 1)
x

=
(x − 2) (2x − 1)

x (x − 1)

3
Express  in the form of 

x8 − 1

x3
x

p − x
q

Solution:

x8 − 1

x3
= x

5 − x
−3

4
Show that  is the same as 5 (n

2
(n − 1) + 3n) 5n (n + 5)

2

Solution:

5 (n

2
(n − 1) + 3n) =

5n

2
(n − 1) + 15n

=
5n (n − 1) + 30n

2

=
5n2 − 5n + 30n

2
=

5n2 + 25n

2

=
5n (n + 5)

2
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3.5 Further Examples
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4 • C1 • Straight Line Graphs
Co-ordinate geometry is the link between algebra and geometry.  The co-ordinate system allows algebraic
expressions to be plotted on a graph and shown in pictorial form. Algebraic expressions which plot as  straight
lines are called linear equations.

A line is the joining of two co-ordinates, thus creating a series of additional co-ordinates between the original
two points.

4.1 Plotting Horizontal & Vertical Lines

The simplest lines to plot are horizontal & vertical lines. 

108642-2-4-6-8-10

-10

-8

-6

-4

-2

0

4

8

10

x 

y 

U (−8, 2)

S (−8, 10)

T (−8, 6)

V (−8,−4)

2

H (10, 4)G (5, 4)F (0, 4)E (−5, 4)
6

Origin (0, 0)

Notice that the horizontal line, with points E to H, all have the same y coordinate of 4.

The equation of the line is said to be:

y = 4

   y = a or, in general: (where  = a number)a

Similarly the vertical line, with points S to V, all have the same x coordinate of −8.

The equation of the line is said to be:

x = −8

   x = b or, in general: (where  = a number)b
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4.2 Plotting Diagonal Lines

Take the equations:

y = x

y = −x

In the first case, y is always equal to the value of x.

In the second case, y is always equal to the value of −x.

For each equation, a simple table of values will show this. The results can be plotted as shown:

y = x

x − 6 0 6

y − 6 0 6

Co-ords (−6, −6) (0, 0) (6, 6)

108642-2-4-6-8-10

-10

-8

-6

-4

-2

0

4

8

10

x 

y 

2

6

y = x

In this case y has the same value as , and produces a
diagonal line which slopes upwards.

 x

y = −x

x − 6 0 6

y 6 0 − 6

Co-ords (−6, 6) (0, 0) (6, −6)

108642-2-4-6-8-10

-10

-8

-6

-4

-2

0

4

8

10

x 

y 

2

6

y = –x

In this case, y has the same value as , and produces
another diagonal line, but sloping downwards.

−x

Notice also that both lines pass through the origin.
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4 • C1 •  Straight Line Graphs

4.3 The Equation of a Straight Line

4.3.1 The Equation

So far we have seen 4 special cases of the straight line.

  x = a  a ,where is a number

y = b  b ,where is a number

y = x

y = −x

In fact, these are special cases of the more general equation of a straight line, which, by convention, is expressed
as:

  y = mx + c  m & c .where  are constants

4.3.2 Solving the equation

Whereas an equation such as  has only one solution (i.e. ), an equation with two variables 
( ), must have a pair of values for a solution. These pairs can be used as co-ordinates and plotted. A line
has an infinite number of pairs as solutions.

2y = 10 y = 5
x  yand

4.3.3 Rearranging the equation

Any equation with two variables ( ), will produce a straight line, but it may not be conveniently written in
the ideal form of .

x  yand
y = mx + c

4.3.3.1  Example:

Rearrange the equation  to the standard form for a straight line.4y − 12x − 8 = 0

Solution:

4y − 12x − 8 = 0                 A non standard straight line equation

4y = 12x + 8    Transpose the terms 12x and 8

y = 3x + 2      Divide by 4, giving the standard equation.

4.3.4 Interpreting the Straight Line Equation

When thinking about plotting equations, think of y as being the output of a function machine (the y co-ordinate),
whilst x is the input (the x coordinate). 

For example, the straight line . The y co-ordinate is just the x coordinate multiplied by 3 with 2
added on. Plotting all the values of x and y will give our straight line.

y = 3x + 2
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4.4 Plotting Any Straight Line on a Graph

Take the simple equation:

y = 2x + 1

In order to plot this equation, y has to be calculated for various values of x, which can then be used as co-
ordinates on the graph.  Of course, only two points are required to plot a straight line but a minimum of three
points and preferably 4 should be used, in order to spot any errors. If one point is not in line with the others then
you know there is a mistake. 

Draw a table of values, choose some easy values of x (like 0, 2, 4), then calculate y:

y = 2x + 1

x 0 2 4

y 1 5 9

Co-ords (0, 1) (2, 5) (4, 9)

Notice how the values of x and y both increase in a linear sequence. As x increases by 2, y increases by 4. The
two variables are connected by the rule: ‘The y coordinate is found by multiplying the x coordinate by 2 and
adding 1’. 

Plot the co-ordinates as shown:

108642-2-4-6-8-10 0
x 

y 

R (4, 9)
10

8

6

4

2

– 2

– 4

– 6

– 8

– 10

Q (2, 5)

P (0, 1)

y intercept

y = 2x + 1

Notice that the line cuts the y-axis at .y = 1
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4 • C1 •  Straight Line Graphs

4.5 Properties of a Straight Line

From the previous diagram, note that the straight line:

j is sloping—we call this a gradient,

j and crosses the y axis at a certain point, we call the y intercept.

4.5.1 Gradient or Slope

Gradient is a measure of how steep the slope is rising or falling. It is the ratio of the vertical rise over the
horizontal distance, measured between two points on the straight line. 

Remember ‘rise over run’.

By convention, the gradient is usually assigned the letter m (after the French word 'monter', meaning ‘to climb’). 

The gradient can be either positive or negative.

Slope or Gradient,  m =
Vertical rise

Horizontal run

m =
Change in y values

Change in x values
=

y2 − y1

x2 − x1

where ( ) are the co-ordinates of the first point and ( ) are the co-ordinates of the second point.x1,  y1 x2,  y2

The larger the number m, the steeper the line. 
Imagine walking left to right, the slope is uphill and is said to be positive.

A horizontal line has a slope of zero, .

Walking (or falling) downhill, left to right, the slope is said to be negative.

m
 =

 1

m = 0

m
 =

 5

m
 =

 −
1

m = 0

m
 =

 −
5

m = 0

The slope of a vertical line is not determined as the sum would involve division by zero, or it could be regarded
as infinite.
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4.5.2 Positive Gradients

A line in which both the  and  values increase at the same time is said to be positive, and has a positive
gradient. In other words, as we move from left to right along the x-axis, y increases. We say this is a positive
slope or gradient.

x y

108642-2-4

-2

0

2

4

6

8

10

x 

y 

Rise

Run 

L (x2, y2)

K (x1, y1)
 (y2 − y1)

 (x2 − x1)

Positive Gradient

4.5.2.1  Example: Positive Slope

In the above diagram, point K has co-ordinates (2, 6) and point L (6, 10).

Gradient,  m =
rise

run
=

Change in y values

Change in x values

=
y coord of  L − y coord K
x coord of  L − x coord K

=
y2 − y1

x2 − x1

=
10 − 6

6 − 2
=

4

4
= 1

m = 1
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4 • C1 •  Straight Line Graphs

4.5.3 Negative Gradients

As we move from left to right along the x-axis, y decreases. We say this is a negative slope or gradient.

108642-2-4

-2

0

2

4

6

8

10

x 

y 

Rise

Run 

N (x2, y2) (y2 − y1)

 (x2 − x1)

M (x1, y1)

As x moves in a positive direction

y moves in a negative direction

        hence a negative gradient

Negative Gradient

4.5.3.1  Example: Negative Slope

In the above diagram, point M has co-ordinates (2, 6), labelled , and point N (10, 2), labelled

. Notice that in this case subtracting the y co-ordinates produces a negative number.

(x1,  y1)
(x2,  y2)

Gradient,  m =
rise

run
=

Change in y values

Change in x values

=
y coord of  N − y coord M
x coord of  N − x coord M

=
y2 − y1

x2 − x1

=
2 − 6

10 − 2
=

−4

8
= − 0.5

m = − 0.5

If the order of the co-ordinates are swapped round, so that point N (10, 2) is the first point , and M

(2, 6) the second , then the gradient is calculated in a similar manner: 

(x1,  y1)
(x2,  y2)

Gradient,  m =
y coord of  M − y coord N
x coord of  M − x coord N

=
y1 − y2

x1 − x2

=
6 − 2

2 − 10
=

4

−8
= − 0.5

m = − 0.5

It’s a relief to find the answers are the same!!!!!
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4.5.4 Expressing Gradients

So far, a gradient has been expressed as a number, and the steeper the gradient the bigger the number. Gradients
can also expressed as a ratio or a percentage.

A gradient of 0.2 is often quoted as “1 in 5”, meaning it rises (or falls) 1 metre in every 5 metres distance.

This can also be expressed as a percentage value, thus:  0.2 × 100 = 20%

This is summarised below:

m = 0.5

m = 50%

m = 1:2

m = 1

m = 100%

m = 1:1

m = 2

m = 2:1

m = 200%

m = 0.2

m = 20%

m = 1:5

4.5.5 Intercept point of the y axis

In the diagram below, note how the straight line crosses the y axis at some point. The y intercept point always
has the x coordinate of zero. (Point Q has a coordinate of (0, 6)).

y = mx + c

The y intercept point can be found if  then:x = 0,

y = c

108642-2-4

-2

0

2

4

6

8

x 

y 

Q (0, 6)

y =  −x + 6y intercept point

Intercept point of the y axis
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4 • C1 •  Straight Line Graphs

4.6 Decoding the Straight Line Equation

We can now see that the equation of a line can be rewritten as:

y =  (slope) x + (y intercept)

y = mx + c

y intercept,slope, m c

Notice that:

j If  ; then . — A horizontal line with y intercept c.m = 0 y = c

j If  ; then . — A 45° diagonal line with y intercept c.m = 1 y = x + c

j If the line is vertical then the horizontal run is zero. This means that the gradient cannot be determined
as division by zero is not allowed, or indeterminate. Try it on a calculator!
If you consider the ‘run’ as being very small (say 0·00001) then it is easy to see that m would be very
large and so m could be regarded as being infinite.

m =
rise

run
=

rise

0
= ∞

The relationship between gradient and the constant  can be seen below. The points  and  are convenient
points chosen to measure the rise and run of the graph.

c S T

8642-2

-2

0

2

4

6

8

x 

y T (6, 10)

S (2, 2)

Rise

Run 

(10−2)

(6−2)-4

y = 2x − 2

intercept 

Slope, m = 8/4 = 2

y

10

Decoding the Straight Line Equation
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4.7 Plotting a Straight Line Directly from the Standard Form

Once you understand the standard form of  then it is easy to plot the straight line directly on the
graph.

y = mx + c

4.7.1  Example:

Plot the equation y = 3x + 2.

Solution:
From the equation the gradient is 3 and the y intercept is 2.

The gradient means that for every unit of x, y increases by 3. To improve the  accuracy when drawing the
line, we can draw the gradient over (say) 3 units of x. In which case y increases by 9 etc.

8642-2

-2

0

2

4

6

8

x 

y 

T (3, 11)

S (0, 2)

Rise

Run 

(9)

(3)-4

y = 3x + 2

10

12

4.8 Parallel Lines

It is worth pointing out the parallel lines have the same gradient - always.

108642-2-4
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0
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4
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x 

y 

 Parallel lines have the same gradient - always
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4 • C1 •  Straight Line Graphs

4.9 Straight Line Summary
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4.10 Topical Tips

j The quick way to plot a straight line is to calculate the point where the line crosses the x and y axis 
(i.e. find  and find ), and then join the two points. However, when plotting graphs
it is always best to use a minimum of 3 points, preferably 4. Errors will then stand out, as all lines
should be dead straight.

x  y = 0if y  x = 0if

j The slope or gradient of a line will only look correct if the x & y scales are the same.

j Always use the x and y axis values to calculate the slope. Do not rely on the graph paper grid alone to
find the slope, as this is only correct if the x & y scales are the same.

j If the given equation is , take care to write the gradient down as −3 and not 6. It is the
coefficient of x that gives the gradient.

y = 6 − 3x

j The equation of the x-axis is 

The equation of the y-axis is 

Don't get confused.

y = 0

x = 0
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5 • C1 • Geometry of a Straight Line

5.1 General Equations of a Straight Line

There are three general equations that may be used. Sometimes an exam question may ask for the answer to be
written in a certain way, e.g. .ax + by = k

5.1.1 Version 1

y = mx + c

where m = gradient, and the graph cuts the y-axis at c.

5.1.2 Version 2

y − y1 = m (x − x1)

where m = gradient, and  are the co-ordinates of a given point on the line.(x1, y1)

Example Find the equation of a line with gradient 2 which passes through the point (1, 7)

y − 7 = 2 (x − 1) ⇒ y − 7 = 2x − 2

y = 2x + 5

5.1.3 Version 3

ax + by = k

Note that you cannot read the gradient and the y-intercept from this equation directly, but they can be calculated
using:

y = −
a

b
x +

k

b

5.1.3.1  Example:

1 Find the gradient of 3x − 4y − 2 = 0

3x − 2 = 4y

y =
3

4
x −

2

4

=
3

4
Gradient 

2 One side of a parallelogram is on the line  and point P (3, 2) is one vertex of the
parallelogram. Find the equation of the other side in the form .

2x + 3y + 5 = 0
ax + by + k = 0

  3y = −2x − 5      Gradient of given line:

y = − 
2

3
x − 5

= − 
2

3
Gradient

 y − 2 = − 
2

3
(x − 3)Equation of line through P

y = − 
2

3
+ 4 ⇒  2x + 3y − 12 = 0
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5.2 Distance Between Two Points on a Line

Finding the distance between two points on a straight line uses Pythagoras. 

Distance = (x2 − x1)2 + (y2 − y1)2

It should be noted that any distance found will be the +ve square root.

5.2.1  Example:

Find the length of the line segment KL.

108642-2-4

-2

0

2

4

6

8

10

x 

y L (x
2
, y

2
)

K (x
1
, y

1
)

(y2−y1)

(x2−x1)

Distance = (6 − 0)2 + (10 − (−2))2

= 62 + 122 = 36 + 144 = 180

= 6 5

5.3 Mid Point of a Line Segment

The mid point is just the average of the given co-ordinates.

= (x1 + x2

2
,

y1 + y2

2 )Mid point co-ordinates

5.3.1  Example:

Find the mid point co-ordinate M.

108642-2-4
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y L (x
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K (x
1
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1
)

M

     M = (0 + 6

2
,

−2 + 10

2 ) = (3,  4)

52 ALevelNotesv8Erm 07-Apr-2013



5 • C1 •  Geometry of a Straight Line

5.4 Gradient of a Straight Line

Gradient is the rise over the run. Note that a vertical line can be said to have a gradient of ∞.

Gradient,  m =
Rise

Run
=

y2 − y1

x2 − x1

This is equivalent to the amount of vertical rise for every 1 unit of horizontal run.

5.4.1  Example:

1 Find the gradient of line segment KL.

108642-2-4

-2

0

2

4

6

8

10

x 

y L (x
2
, y

2
)

K (x
1
, y

1
)

(y2−y1)

(x2−x1)

 Gradient =
Rise

Run
=

10 − (−2)
6 − 0

=
12

6
= 2

2 The ends of a line segment are  and .P (s − 2t, s − 3t) Q (s + 2t, s + 3t)
Find the length and gradient of the line segment, and the co-ordinates of the mid point.

Solution:

P(s−2t, s−3t)

(y2−y1)

(x2−x1)

Q(s+2t, s+3t)
M

x2 − x1 = s + 2t − (s − 2t) = 4t

y2 − y1 = s + 3t − (s − 3t) = 6t

Distance PQ = (4t)2 + (6t)2 = 16t2 + 36t2

= t 52

Gradient =
Rise

Run
=

6t

4t
= 1·5

M = (4t

2
,

6t

2 ) = (2t,  3t)Mid point 
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5.5 Parallel Lines

The important point about parallel lines is that they all have the same gradient.

54321-1-2

-1

O

1

2

3

4

x 

y 

1

m

1

m

1

m

As seen earlier, one way of expressing a straight line is:

ax + by = k

The gradient only depends on the ratio of a and b.

y = −
a

b
x −

k

b

Hence, for any given values of a and b, say  and , then all the lines…a1 b1

a1x + b1y = k1

a1x + b1y = k2

a1x + b1y = k3 etc

…are parallel.

5.5.1  Example:

1 Find the equation of a straight line, parallel to , and which passes through the point
(2, 8).

2x + 3y = 6

Solution:
Since an equation of the form  is parallel to , the problem reduces to one
of finding the value of k, when x and y take on the values of the given point (2, 8).

2x + 3y = k 2x + 3y = 6

2 × 2 + 3 × 8 = k             

4 + 24 = k

∴  k = 28

 2x + 3y = 28Equation of the required line is:
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5.6 Perpendicular Lines

Lines perpendicular to each other have their gradients linked by the equation:

m1 m2 = −1

O x 

y 
Q

P
1

m

−1

m

R

S

From the diagram:

   PQ m1 = mGradient of

   RS m2 =
−1

m
Gradient of

  ∴   m1 m2 = m ×
−1

m
= −1

5.7 Finding the Equation of a Line

A very common question is to find the equation of a straight line, be it a tangent or a normal to a curve.

O x 

y 
Q (x, y)

P (x
1
, y

1
)

(y−y1)

(x−x1)

From the definition of the gradient we can derive the equation of a line that passes through a point :P (x1, y1)

m =
Rise

Run
=

y − y1

x − x1

∴ y − y1 = m (x − x1)

This is the best equation to use for this type of question as it is more direct than using .y = mx + c
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5.7.1  Example:

1 Find the equation of the line which is perpendicular to  and which passes though
the point P (7, 10).

3x − 4y + 8 = 0

Solution:

3x − 4y + 8 = 0

y =
3x + 8

4
=

3x

4
+ 2   

∴ Gradient =
3

4

= − 
4

3
Gradient of perpendicular line

 P ⇒  y − 10 = − 
4

3
(x − 7)Equation of line thro’

3y − 30 = − 4x − 28

4x + 3y − 58 = 0

2 Prove that the triangle ABC is a right angled triangle. The co-ordinates of the triangle are given in
the diagram.

Solution:
To prove a right angle we need to examine the gradients of each side to see if they fit the formula
for perpendicular lines.

AB =
4 − 2

8 − (−2)
=

2

10
=

1

5
Gradient of 

BC =
8 − 4

2 − 8
=

4

−6
= −

2

3
Gradient of 

AC =
8 − 2

2 − (−2)
=

6

4
=

3

2
Gradient of 

 mBC × mAC = −
2

3
×

3

2
= −1 Test for perpendicularity:

Sides AC & BC are perpendicular, therefore it is a right angled triangle.
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3 A line l1  passes though the point P (3, −4), 
and the line l2   passes though the point Q (−2, 8).

12y − 5x + 63 = 0
7y − 12x − 90 = 0

Find the co-ordinates of the intersection of the two lines, point R, and hence or otherwise show that
the triangle PQR is a right angled isosceles triangle.  

O x 

y 

R

Q (−2, 8)

P (3, −4)

l

l
2

1

Solution:
To find the co-ordinates of the intersection, set up a simultaneous equation:

12y − 5x = −63    (1)

7y − 12x = 90       (2)

×7  84y − 5x = −441    (3)

×5     84y − 204x = 1080           (4)
      

169x = −1521

x = −9

  12y + 45 = −63 ⇒  y = −9Substitute into (1)

∴  R (−9, −9)Co-ordinates of

To test if two lines are perpendicular to each other, find the gradients of each line.

 l1 =
yQ − yR

xQ − xR

=
8 − (−9)

−2 − (−9)
=

17

7
Gradient of 

 l2 =
yP − yR

xP − xR

=
−4 − (−9)
3 − (−9)

=
5

12
Gradient of 

 PQ =
yP − yQ

xP − xQ

=
−4 − 8

3 − (−2)
= −

12

5
Gradient of 

 l2 ×  PQ = −1From this, note that the gradients of 

Therefore, the triangle is a right angled triangle. 

57



My A Level Maths Notes

To test for an isosceles triangle, find the lengths of  and PQ.l1

 l1 = (xR − xP)2 + (yR − yP)2Length of 

 l1 = (−9 − 3)2 + (−9 − (−4))2 = 122 + 52 = 13Length of 

 PQ = (xQ − xP)2 + (yQ − yP)2Length of 

 PQ = (−2 − 3)2 + (8 − (−4))2 = 52 + 122 = 13Length of 

Therefore, the triangle is a right angled isosceles triangle. 

5.8 Heinous Howlers

Always use the x and y axis values to calculate the slope. Do not rely on the graph paper grid alone to find the
slope, as this is only correct if the x & y scales are the same.
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6 • C1 • The Quadratic Function

6.1 Intro to Polynomials

A Polynomial expression has the form:

anx
n + an − 1x

n − 1 +… + a2x
2 + a1x + a0

where  are the terms coefficient, and n is a positive integer. Negative powers are not allowed in a
polynomial. The variable shown here is x, but it can be any other convenient letter.

a0, a1, a2… an

The degree, or order, of the polynomial is given by the highest power of the variable.

In general, multiplying two linear expressions will give a second degree polynomial (a quadratic), and
multiplying a linear expression with a quadratic will give a third degree polynomial (a cubic).

A polynomial can be ‘solved’ by setting the expression to zero. This is the same as asking ‘what are the values of
x when the curve crosses the x-axis’. The number of possible solutions or roots, matches the order of the
polynomial. A cubic function will have up to 3 roots, whilst a quadratic has up to 2 roots.

Think of this as solving a simultaneous equation of (say):     y = ax2 + bx + c & y = 0

6.2 The Quadratic Function

A quadratic function is a second order polynomial with the general form:

ax
2 + bx + c = 0  a ≠ 0

When plotted, a parabolic curve is produced that is useful in engineering and physics. e.g. footballs in motion
follow a parabolic curve very closely, and designs for headlamp reflectors are also parabolic in shape.

A quadratic curve is symmetrical about a line of symmetry which passes through the vertex of the curve (the
minimum or maximum point of the curve).

A quadratic function has up to two solutions or roots which may be:

j Two distinct real roots

j Two equal roots, (coincident roots)

j No real roots, (actually there are roots, but they involve imaginary or complex numbers which is not

part of C1)

Vertex

x

y

O

Line of Symmetry

y-intercept

2 Roots

x

y

O

Coincident Roots

x

y

O

No Real Roots

Quadratic Features
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It is interesting to note the shape and way that a family of curves relates to each other.

y = x2

y = −x2

y = x2 − 2x

y = x2 − 4xy = x2 + 4x

y = x2 + 2x

Family of Quadratic Curves

6.3 Quadratic Types

There are three general form of quadratic function:

j Standard form: ax2 + bx + c = 0

j Factored form: (x + s) (x + t) = 0

j Square or Vertex form: a (x + p)2 + q = 0

From the standard form, and assuming that , there are three cases to deal with:a = 1

j Hence:  
⇒

b = 0 x2 − c = 0
x2 = c x = ± c

j Hence:
⇒  or 

c = 0 x2 + bx = 0
x (x + b) = 0 x = 0 x = −b

j Hence:

⇒  or 

Note that:

c is +ve when s & t have the same sign.

c is −ve when s & t have opposite signs.

b ≠ 0 ,  c ≠ 0 x2 + bx + c = 0

(x + s) (x + t) = 0 x = −s x = −t

(s + t) = b;  st = c

6.4 Quadratic Syllabus Requirements

You need to be able to:

j Factorise them

j Solve them by:

j Factorising

j Completing the square

j Using the quadratic formula

j Sketch them − either by completing the square, finding the factors, or knowing the relationship
between the equation and its various features.

j Understand the significance of the discriminant

j Recognise that some complex looking equations can be solved by reduction to a standard quadratic.
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7 • C1 • Factorising Quadratics

7.1 Methods for Factorising

Factorising is the opposite of expanding the brackets of an expression.

The key is to recognise the different sorts of expressions that might be presented. Most are listed below:

j Expressions with a common factor: e.g. 2x2 + 6x + 8 = 2 (x2 + 3x + 4)

j Expressions of the form: (u + v)2 = k

j Difference of two squares: u2 − v2

j Perfect square: (see completing the square below)

j Quadratic factorisation, type: x2 + bx + c    a = 1

j Quadratic factorisation, type: ax2 + bx + c  a > 1

j Completing the square, (see separate section)

j Quadratic formula, (see separate section)

Some other key pointers are:

j Factorisation is made easier when the coefficients a & c are prime numbers

j If  is a factor, i.e.  if all the coefficients add up to 0f (1) = 0  (x − 1)then x = 1

j A quadratic will only factorise if  is a perfect square (see section on discriminants).b2 − 4ac

7.2 Zero Factor Property

Recall that solving any quadratic is based on the Zero Factor Property which says that if the product of two (or
more) variables is zero, then each variable can take the value of zero, thus:

  uv = 0  u = 0      v = 0If then OR

which is why we go to so much trouble to factorise polynomials.

7.3 Expressions with a Common Factor

Expressions with the form:

ax
2 + bx = x (ax + b)

Always remove any common factors before factorising a polynomial.

7.3.1  Example:

1
2x

2 + 16x + 24 ⇒ 2 (x2 + 8x + 12)

          = 2 (x + 2) (x + 6)

2 Solve 6x2 − 2x = 0

Solution

6x
2 − 2x = 0

2x (3x − 1) = 0

2x = 0 ⇒  x = 0

3x − 1 = 0 ⇒  x =
1

3
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7.4 Expressions of the form (u + v)2 = k

Expressions with the form  can be solved without factorisation simply by taking roots each side
and solving for x.

(u ± v)2 = k

(x + v)2 = k

(x + v) = ± k

x = −v ± k

7.4.1  Example:

1 Solve:

(x + 3)2 = 16

Solution

(x + 3) = ±4

x = −3 ± 4

x = 1,  or − 7

2 Solve:

(3x − 2)2 = 12

Solution

(3x − 2) = ± 12

x =
2 ± 12

3

x =
2 + 2 3

3
 or 

2 − 2 3

3

7.5 Difference of Two Squares

Expressions with the form , called the difference of squares (LHS), is always the sum times the
difference (RHS):

u2 − v2

u
2 − v

2 = (u + v) (u − v)

7.5.1  Example:

1 Factorise:  x2 − 1

(A favourite expression in exams, as it disguises the fact that it is the difference of squares).

Solution

x
2 − 1 = (x + 1) (x − 1)

2 Factorise: x4 − 36y2

(Another favourite expression in which you need to recognise that each term can be expressed as a
squared term).

Solution

x
4 − 36y

2 ⇒ (x2)2
− (6y)2

⇒ (x2 + 6y) (x2 − 6y)
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7.6 Perfect Squares

There is more on this in the next section dealing with Completing the Square, but for now you need to recognise
expressions with the form , which expand to this:(u ± v)2

(u + v)2 = u
2 + 2uv + v

2

(u − v)2 = u
2 − 2uv + v

2

 u
2 + v

2 Note that: has no factors

7.6.1  Example:

1 Solve 4x2 + 20x + 25 = 0

Solution

ax
2 + bx + c = 0

4x
2 + 20x + 25 = 0

(2x + 5) (2x + 5) = 0

Recognise that a and c are square numbers and that the middle term in x, is  2 (2x × 5) = 20x

7.7 Finding Possible Factors

The heart of factorising a quadratic is finding any possible factors without having to guess wildly.

Using our standard quadratic equation , if the roots are rational, possible solutions are given by:ax2 + bx + c

± 
f actors of  coef f icient c
f actors of  coef f icient a

7.7.1  Example:

Find the possible factors for 3x2 − 14x − 5

Since  factors for c are 1 & 5 and for , factors for a are 1 & 3.c = 5 a = 3

 ±
1

1
, ± 

5

1
, ± 

1

3
, ± 

5

3
⇒ ± 1, ± 5, ± 

1

3
, ± 

5

3
Possible solutions are:

 (3x + 1)  and (x − 5)Actual factors are:

Note, this only gives you a ‘starter for 10’ not the solution, and it only works for rational roots. However, it does
work for all polynomials.

An example with irrational roots is:  which has potential roots of  ±1 and  ±3, but the real roots are:x3 − 3 = 0
3 3 = 1·4422

Large values of a and c, can lead to a large number of potential solutions, so this method has its limits.

We find that for the standard quadratic: x2 + bx + c

x2 + bx + c = (x + )
           ↓

(x + )
           ↓

          

                                         cFactors of 

and for the standard quadratic: ax2 + bx + c

                   aFactors of 

ax2 + bx + c = ( x + )
↑                    

                   ↓

( x + )
↑                   

                    ↓

                    

                                                 cFactors of 
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7.8 Quadratic Factorisation, type x2 + bx + c

Consider how factors s and t combine to form a quadratic with the form :x2 + bx + c

(x + s) (x + t) = x
2 + (s + t) x + st

(x + s) (x − t) = x
2 + (s − t) x − st

 (x − s) (x + t) = x
2 + (−s + t) x − st

(x − s) (x − t) = x
2 − (s + t) x + st

Notice how the product of the factors s and t combine to form the constant part of the quadratic, c, and the sum
or difference combine to form the x coordinate b.

The signs of the coefficients need to be handled with care:

(x + s) (x + t) ⇒ x
2 + bx + c

(x ± s) (x ∓ t) ⇒ x
2 ± bx − c

(x − s) (x − t) ⇒ x
2 − bx + c

Set up a small table to find the factors of c and to explore the sum and difference to make the coefficient of x:

7.8.1  Example:

1 Factorise: x2 + 8x + 12

Since the coefficient of , and signs of both the following terms are positive, then the form
of factors must be .

x2 = 1
(x +  … ) (x +  … )

c b

1 12

2 6 2 + 6 = 8

3 4

∴ x2 + 8x + 12 = (x + 2) (x + 6)

2 Factorise: x2 − x − 12

Since the coefficient of , and signs of both the following terms are negative, then the form
of factors must be .

x2 = 1
(x +  … ) (x −  … )

c b

1 12

2 6

3 4 3 − 4 = −1

∴ x2 − x − 12 = (x + 3) (x − 4)

3 Factorise: x2 − 8x + 16

Since the coefficient of , and sign of the x term is negative, and the constant term is
positive, then the form of factors must be .

x2 = 1
(x −  … ) (x −  … )

c b

1 16

2 8

3 /

4 4 −4 − 4 = −8

∴ x2 − 8x + 16 = (x − 4) (x − 4)
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7.9 Factorising Quadratic of Type: ax2 + bx + c

So far we have only dealt with quadratics where . Now for some problems with .a = 1 a > 1

7.9.1 Traditional Method

Consider how factors s and t combine to form a quadratic with the form , assuming that a is
factored as :

ax2 + bx + c
a × 1

(ax + s) (x + t) = ax
2 + (s + at) x + st

(ax + s) (x − t) = ax
2 + (s − at) x − st

  (ax − s) (x + t) = ax
2 + (−s + at) x − st

(ax − s) (x − t) = ax
2 − (s + at) x + st

Notice how the product of the factors s and t combine to form the constant part of the quadratic, c, and the sum
or difference combine with the coefficient a to form the x coefficient.

Set up a small table to find the factors of c and to explore the sum and difference to make up the coefficient of x.
One of the factors has to be multiplied by a as shown:

7.9.1.1  Example:

1 Factorise: 3x2 + 11x + 10

Since the coefficient of , and signs of both the following terms are positive, then the form of
factors must be .

x2 = 3
(3x +  … ) (x +  … )

c b

s t s + at

1 10

2 5 2 + (3 × 5) ≠ 11

5 2 5 + (3 × 2) = 11

10 1

∴ 3x2 + 11x + 10 = (3x + 5) (x + 6)

2 Factorise: 5x2 − 21x + 18

Since the coefficient of , and sign of the x term is negative, and the constant term is
positive, then the form of factors must be .

x2 = 5
(5x −  … ) (x −  … )

c b

s t −s − at

1 18

2 9

3 6

6 3 −6 − (3 × 5) = −21

∴ 5x2 − 21x + 18 = (5x − 3) (x − 6)

3 Factorise: −5x2 + 7x − 2

Step one is to rewrite the expression in such a way as to give a +ve  term: )x2 − (5x2 − 7x + 2

c b

s t −s − at

1 2

2 1 −2 − 5 = −7

∴ − (5x2 − 7x + 2) = − [(5x − 2) (x − 1)]

∴ − 5x2 + 7x − 2 = (−5x + 2) (x − 1)
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7.9.2 Factoring by Grouping

This method works for any polynomial, not just quadratics. This method relies on manipulating the terms to find
a common factor between the terms, which may involve splitting the terms to achieve the required grouping.
However, it it is not always obvious how to arrange the grouping of the terms, hence lots of practise is required.

7.9.2.1  Example:

1 Factorise by grouping:

2x
2 + 5x − 3 = 2x

2 + 6x − x − 3

= (2x
2 + 6x) − (x + 3)

= 2x (x + 3) − 1 (x + 3)

= (2x − 1) (x + 3)

2 Factorise by grouping:

5x
2 − 12x + 4 = 5x

2 − 10x − 2x + 4

= (5x
2 − 10x) − (2x − 4)

= 5x (x − 2) − 2 (x − 2)

= (5x − 2) (x − 2)

7.9.3 Vieta's Theorem

All the quick methods below are based on Vieta's theorem which says that if a quadratic has roots, p & q, then:

x
2 + bx + c = (x − p) (x − q)

= x
2 − (p + q) x + pq

 a :  a (x2 + bx + c) = a (x2 − (p + q) x + pq)Multiply by

ax
2 + abx + ac = ax

2 − a (p + q) x + apq

Comparing coefficients:

ab = −a (p + q)

 →   p + q = −b

ac = apq

→    pq = c

66 ALevelNotesv8Erm 07-Apr-2013



7 • C1 •  Factorising Quadratics

7.9.4 The ‘ac’ Method v1

This is my personal choice of method. 
Starting wth the standard form: , (and having taken out any common factors), we convert this to
the form:  which is now easier to factorise. 

ax2 + bx + c
x2 + bx + ac

Start by factorising the value of ac: then follow the method below:

ac

f 1 f 2 

f 3 f 4

f 5 f 6

j Find all the factor pairs of ac:  etc. f1 × f2; f3 × f4

j Find the factor pair that adds up to b. Say f 3 ± f 4

j The solution to  is then x2 + bx + ac (x + f 3) (x + f 4)

j The factors  are then divided by a and the solutions to  become:f 3 & f 4 ax2 + bx + c

(x +
f 3

a ) = 0  (x +
f 4

a ) = 0and

j Simplify the fractions  and  into their lowest forms
f 3
a

f 4
a

j Remove the fractional elements by multiplying each solution by a.

This method can be shown to work by considering :

(mx + p) (nx + q) = mnx
2 + (mq + np) x + pq

7.9.4.1  Example:

1 Solve 2x2 − 5x − 3 = 0

Solution:
Multiply  and reform the equation as 2 × −3 x2 − 5x − 6 = 0

Find the factor pairs for ac:

Two factors add up to −5:  (1 − 6) = −5

ac b

−6

1 −6 1 − 6 = −5

−2 −3 This gives wrong soln!

         x2 − 5x − 6 = (x + 1) (x − 6) = 0Now:  

       2x
2 − 5x − 3 = (x +

1

2) (x −
6

2) = 0Hence:

  (x +
1

2) (x − 3) = 0Simplify:   

  x = −
1

2
  x =  3Solutions are: and

  (2x + 1) (x − 3) = 0Rearranging the solutions, the factorised equation is:

After some practice it can be seen that you can multiply the factors with the fractional part by a to
give the final factors, neatly presented.

      (x +
1

2) (x − 3) = 0e.g.

   2 (x +
1

2) = 0 ⇒  (2x + 1) = 0
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2 Solve 20x2 − 7x − 6 = 0

Solution:
Multiply  and reform the equation as 20 × −6 x2 − 7x − 120 = 0

Find the factor pairs for ac:

Two factors add up to −7:  (8 − 15) = −7

ac b

−120

1 120

2 60

3 40

4 30

5 24

6 20

8 −15 8 − 15 = −7

    x2 − 7x − 120 = (x + 8) (x − 15) = 0Now:

  20x
2 − 7x − 6 = (x +

8

20) (x −
15

20) = 0Hence:

  (x +
2

5) (x −
3

4) = 0Simplify:

  x = −
2

5
  x =

3

4
Solutions are: and

   5x + 2 = 0      4x − 3 = 0Hence: and

∴   20x
2 − 7x − 6 = (5x + 2) (4x − 3)

Alternatively, remove the fractional elements by multiplying by a:

(x +
8

20) (x −
15

20) = 0

20 (x +
8

20) = 0 ⇒  20x + 8 = 0   ⇒   5x + 2 = 0

20 (x −
15

20) = 0 ⇒  20x − 15 = 0 ⇒   4x − 3 = 0

After lots of practise, a short cut presents itself. Using the simplified factors to illustrate this:

(x +
2

5) (x −
3

4) = 0

Move the denominator of the fraction and make it the coefficient of the x term:

(¸
↑

x +
2

← 5) (¸
↑

x −
3

← 4) = 0

(5x + 2) (4x − 3) = 0
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3 A special case arises when there is only one root, (sometimes called a double root).

Factorise 4x2 + 12x + 9

Solution:
Multiply  and find the factor pairs:4 × 9

Two factors add up to 12:  (6 + 6) = 12

36 b

1 36

2 18

3 12

4 9

+ 6 + 6 6 + 6 = 12

9 4

   (x +
6

4) (x +
6

4)Hence:

      (x +
3

2) (x +
3

2)Simplify:

 x = − 
3

2
  x = − 

3

2
Solutions are: and

  (2x + 3) (2x + 3) = (2x + 3)2
Factors are:

4 Solve 3x2 − 3x − 18 = 0

Solution:
Multiply  and find the factor pairs:3 × −18

Two factors add up to −3:  (6 − 9) = −3

−54 b

1 54

2 27

3 18

+ 6 −9 6 − 9 = −3

      (x +
6

3) (x −
9

3) = 0Hence:

   (x + 2) (x − 3) = 0Simplify:

 x = 2  x = −3Solutions are: and

  (x + 2) (x − 3)Factors are:
 

Note that the coefficients of x in the factorised expression are both 1. Look at the original equation
and you can see that all the terms could have been divided by 3 to give:

x
2 − x − 6 = 0
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5 Another double root example:

Solve 9x2 − 6x + 1 = 0

Solution:
Multiply  and find the factor pairs:9 × 1

Two factors add up to −6:  (−3 − 3) = −6

9 b

1 9

2 −

−3 −3 −3 − 3 = −6

   (x −
3

9) (x −
3

9) = 0Hence:

        (x −
1

3) (x −
1

3) = 0

    x =  
1

3
Solution is:

  (3x − 1) (3x − 1) = 0Factors are:  

6 For equations that have a −ve  term, this method works best if the −ve part is changed to +ve by
removing a common factor of −1:

x2

Solve −6x2 + 5x − 1 = 0

Solution:

⇒−6x2 + 5x − 1 = 0 (−1) (6x2 − 5x + 1) = 0

 6x
2 − 5x + 1 = 0Work on solving: 

Multiply  and find the factor pairs:6 × 1

Two factors add up to −5:  (−2 − 3) = −5

6 b

1 6

−2 −3 −2 − 3 = −5

   (x −
2

6) (x −
3

6) = 0Hence:

        (x −
1

3) (x −
1

2) = 0

    x =  
1

3
  x =

1

2
Solution is: and

  (3x − 1) (2x − 1) = 0Factors are:  

− 1  ⇒  (−1) (3x − 1) (2x − 1) = 0But include the 

            ⇒  (−3x + 1) (2x − 1) = 0

        ⇒  (3x − 1) (−2x + 1) = 0or
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7.9.5 The ‘ac’ Method v2

Another variation on a theme. Again we turn a hard quadratic into an easier one by multiplying a & c and
replacing c with ac and give the  term a coefficient of 1, giving the form .x2 x2 + bx + ac

7.9.5.1  Example:

Factorise 7x2 − 11x + 6

Solution:
Multiply  and change the quadratic thus:7 × 6

7x
2 − 11x + 6 (1)

→  x
2 − 11x + 42 (2)

Factorise Eq (2)

Two factors add up to −11:  (3 − 14) = −11

42

1 42

2 21

3 −14

  (x + 3) (x − 14)Factors are:

However, we want a  term, so factorise the 14 to 7 × 2:7x2

     (x + 3) (x − 14
7 × 2

)

Move the factor 7, to the  term:x2

     (7x + 3) (x − 2)

Check that the x term coefficient is correct:

     (7
↓
x + 3

↓
) (x

↓
− 2

↓
)

     ↓         3x      ↓

       → −14x     ↵

           −11x
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7.9.5.2  Example:

A special case arises when there is only one root, (sometimes called a double root).

Factorise 4x2 + 12x + 9

Solution:
Multiply  and change the quadratic thus:4 × 9

    x
2 + 12x + 36

Factorise as normal:

Two factors add up to 12:  (6 + 6) = 12

36

1 36

2 18

3 12

4 9

+ 6 + 6

9 4

  (x + 6) (x + 6)Factors are:

The roots are the same, so in assigning value for a, the two required factors have to be the same:

    (x + 6
2 × 3

) (x + 6
2 × 3

)

Move the factor 2, to both the  terms:x2

    (2x + 3) (2x + 3)

Check that the x term coefficient is correct:

(2
↓
x + 3

↓
) (2x

↓
+ 3

↓
)

↓         6x      ↓

       →       6x     ↵

                   12x
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7.9.6 The Division Method

From the standard form:

ax
2 + bx + c

(ax + p) (ax + q)
a

The numbers p & q must add to b, and multiply to ac.

7.9.6.1  Example:

Factorise 10x2 − 7x − 6

Solution:
Multiply  and find the factors.

Two factors add up to −7: 

10 × 6

 (5 − 12) = −7

60

1 60

2 30

3 20

4 15

5 −12

6 10

a = 10 ⇒
(10x + p) (10x + q)

10
Since 

 p = 5  q = −12and

 ⇒
(10x + 5) (10x − 12)

10
Substitute:

 ⇒
(10x + 5)

5
×

(10x − 12)
2

Rearrange:

 ⇒ (2x + 1) × (5x − 6)Cancel:

x = −
1

2
  x =

6

5
and

73



My A Level Maths Notes

7.9.7 The Chinese Cross Product Method

I call this the Chinese Cross Product method, because I found it in a Chinese maths book! It tabulates the normal
method of guessing factors.

Altering the standard form to:

(mx + p) (nx + q) = mnx
2 + (mq + np) x + pq

Notice how the cross product forms the x term coefficient:

 m  p 
×

 n  q 

np + mq

7.9.7.1  Example:

1 Factorise: 5x2 − 12x + 4

Solution:
The factors of 5 are 5×1, and factors of 4 are 1×4, 2×2, −2×−2

Use the cross product to form the x coefficient:

  5x −2 

  1x −2

−10x − 2x

−12x

⇒ (5x − 2)

⇒ (x − 2)
= −12x

∴ 5x
2 − 12x + 4 = (5x − 2) (x − 2)

2 Factorise: 8x2 + 10x + 3

Solution:
The factors of 8 are 8×1, 4×2 and factors of 3 are 1×3, 3×1, −3× −1, −1× −3

You need a separate table for each pair of a factors, and cross multiply with each pair of c factors
and stop when you find the b coefficient.

8x 3 1 −3

1x 1 3 −1

8x + 3x 24x + x −ve

11x 25x ∴ not valid

  

4x 3 

2x 1

4x + 6x

10x

⇒ (4x + 3)

⇒ (2x + 1)
= 10x

∴ 8x
2 + 10x + 3 = (4x + 3) (2x + 1)
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8.1 General Form of a Quadratic

The general form of a quadratic is:

ax
2 + bx + c

The object of completing the square is to put the quadratic into the square form:

a (x + p)2 + q

This is sometimes called the vertex format, for reasons which will become obvious later.

The advantage of changing the standard quadratic into this square form is that we have just one term in x. The 
term has been eliminated.

x2

In practice, when completing the square we need to set the leading coefficient, a, (of the  term) to 1.x2

2x
2 + 4x + 8 ⇒ 2 (x2 + 2x + 4)e.g. 

8.2 A Perfect Square

The expressions  and   are both perfect squares. To complete the square of any quadratic, you
need to get as close to the ideal perfect square as you can by adjusting the constant.

(x + k)2 (x − k)2

The general form of a perfect square is:

(x + k)2 = x
2 + 2kx + k

2

(x − k)2 = x
2 − 2kx + k

2

Notice the coefficient of the expanded x term is 2k. i.e. in order to find k, we halve the coefficient of the x term.

Some practical examples make the point clearly:

(x + 1)2 = x
2 + 2x + 1 = x

2 + 2 (1) x + 1
2

(x + 2)2 = x
2 + 4x + 4 = x

2 + 2 (2) x + 2
2

(x + 3)2 = x
2 + 6x + 9 = x

2 + 2 (3) x + 3
2

(x + 4)2 = x
2 + 8x + 16 = x

2 + 2 (4) x + 4
2

Using this format it is easy to arrange an expression like  into a perfect square.x2 − 12x

Thus:

x2 − 12x = x2 − 2 (6) x                    

= x2 − 2 (6) x + 62 − 62 Adding 62 makes a perf ect square

= {x2 − 2 (6) x + 62} − 62 Subtract 62 to balance the equation

←  →
↓

        

=            (x − 6)2       − 62   

Note that the following types are not perfect squares:

     (x + s) (x + t) = x
2 + (s + t) x + st

e.g. (x + 1) (x + 2) = x
2 + 3x + 2  
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8.3 Deriving the Square or Vertex Format

The square format of a quadratic  can be derived as follows:a (x + p)2 + q

   ax
2 + bx + c = a (x2 +

b

a
x +

c

a)
      = a



(x +

b

2a)
2

− ( b

2a)
2

+
c

a





      = a


(x +

b

2a)
2

−
b2

4a2
+

c

a





      = a (x +
b

2a)
2

−
ab2

4a2
+

ac

a

      = a (x +
b

2a)
2

−
b2

4a
+ c

      = a (x +
b

2a)
2

− ( b2

4a
− c)

      = a (x +
b

2a)
2

− (b2 − 4ac

4a
)

p =
b

2a
  &  q = − (b2 − 4ac

4a
)Hence: 

8.4 Completing the Square

j Find the nearest perfect square by halving the coefficient of the x term, to give k

j Irrespective of whether the perfect square is , subtract (x + k)2  (x − k)2or k2

j Add on the old ‘+ c’ term.

This works by taking the  part of the quadratic and turning this into a perfect square, and to balance the
equation you have to subtract the value of 

x2 + bx
k2

       x
2 + bx + c = x

2 + bx + (b

2)
2

− (b

2)
2

+ c

 x
2 + bx + (b

2)
2

= (x +
b

2)
2

But

   ∴       x2 + bx + c = (x +
b

2)
2

− (b

2)
2

+ c

Assuming , we can write:a = 1

x
2 + bx + c = (x +

b

2)
2

− (b

2)
2

+ c

x
2 − bx + c = (x −

b

2)
2

− (b

2)
2

+ c
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8.4.1  Example:

 x
2 − 8x + 7 ⇒ (x − 4)2

− 16 + 7Ex: 1  

        ⇒ (x − 4)2
− 9

 x
2 + 5x − 12 ⇒ (x +

5

2)
2

− (5

2)
2

− 12Ex: 2

        ⇒ (x +
5

2)
2

− 18
1

4

 x
2 − x − 12 ⇒ (x −

1

2)
2

− (1

2)
2

− 12Ex: 3  

        ⇒ (x −
1

2)
2

− 12
1

4

 2x
2 − 11x − 8 ⇒ 2 (x2 −

11

2
x − 4) = 2


(x −

11

4 )
2

− (11

4 )
2

− 4

Ex: 4

          ⇒ 2


(x −

11

4 )
2

−
185

16





An alternative approach, which just factors out the coefficients of the terms in x:

 − 2x
2 + 12x + 5 ⇒ −2 (x2 − 6x) + 5 = −2 [(x − 3)2

− 9] + 5Ex: 5

         ⇒ −2 (x − 3)2 + 18 + 5

         ⇒ −2 (x − 3)2 + 23
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8.5 Completing the Square in Use

There are several uses for this technique:

j Solve any quadratic

j Solving inequalities

j Graphing — finding the turning point (max / min value) or vertex, and the line of symmetry

j Simplify an equation ready for transformation questions

j Used in circle geometry to find the centre of a circle

j Derivation of the quadratic formula (see later section)

j Integration — used later to manipulate an inverse trig function ready for integration

One advantage of using the method is that x appears in the expression only once, unlike a standard quadratic
where it appears twice. Completing the square can be used on any quadratic, but for solving quadratics, simple
factorisation or the quadratic formula may be easier.

8.6 Solving Quadratics

We shall see later that the quadratic formula for solving quadratics is derived from completing the square, but
completing the square can be used as a relatively simple way to solve quadratics.

8.6.1  Example: Solving Quadratics

Solve the quadratic x2 − 8x + 5 = 0

Solution:

    x
2 − 8x + 5 ⇒ (x − 4)2

− 11

     (x − 4)2 = 11

          x − 4 = ± 11

            x = 4 ± 11

8.7 Solving Inequalities

It turns out that many inequalities can be rearranged as the sum of a square.

8.7.1  Example: Solving Inequalities

Show that  is positive for all real values of x.y = x2 + 2x + 3

Solution:

x
2 + 2x + 3 ⇒ (x + 1)2

− 1 + 3

⇒ (x + 1)2 + 2

Since  will always be positive (as it is squared) then the LHS must be equal or greater than 2,
hence the expression is always positive.

(x + 1)2
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8.8 Graphing − Finding the Turning Point (Max / Min Value)

Looking at the square form of the quadratic, you can see that the minimum or maximum value of the function is
given when the squared term containing x equals zero. 

Recall that any squared term is positive irrespective of the value of x, i.e. .(x + k)2 > 0

If the coefficient of the squared term is positive we have a minimum value, if the coefficient is negative we have
a maximum value.

The min or max value is sometimes referred to as a ‘turning point’ or as the ‘vertex’. For a quadratic the vertex
also defines a line of symmetry.

   y = a (x + p)2 + qGeneral form of a completed square:

 y     x = −p ∴ y = qMin value of is when: 

 (−p,  q)The coordinate of the turning point is:

For a quadratic of the form  where x2 + bx + c a = 1

         y = (x +
b

2)
2

− (b

2)
2

+ c

        x = −
b

2
 ∴  y = − (b

2)
2

+ cTurning point is when: 

For a quadratic of the form , completing the square gives:ax2 + bx + c

    ax
2 + bx + c = a (x2 +

b

a
x +

c

a)
       y = a



(x +

b

2a)
2

− ( b

2a)
2

+
c

a





∴   x = −
b

2a
Turning point is when

   x = −
b

2a
 y Substitute to find 

∴    y = a



0 − ( b

2a)
2

+
c

a





⇒ − a ( b

2a)
2

+
ac

a

       y = −a
b2

4a2
+ c

       y = −
b2

4a
+ c

For a quadratic of the form  where ax2 + bx + c a = 1

x = −
b

2
Turning point is when 

       y = − (b

2)
2

+ c

       y = −
b2

4
+ c
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8.8.1  Example: Graphing and Turning Points

1 Sketching the graph:

Minimum point of graph is when 

Vertex at (2, 3)

The quadratic is symmetrical about the line 

x2 − 4x + 7 ≡ (x − 2)2 + 3

x = 2

∴ y = 3

x = 2

3

2

7

Vertex

x

y

O

y = (x − 2)2 + 3

Max point of graph is when 

Vertex at (−1, 8)

The quadratic is symmetrical about the line 

−x2 − 2x + 7 ≡ −1 (x2 + 2x − 7)
−x2 − 2x + 7 ≡ −1 [(x + 1)2 − 1 − 7]
−x2 − 2x + 7 ≡ −1 (x + 1)2 + 8

x = −1

∴ y = +8

x = −1

(−1, 8)

−1

7

x

y y = −(x + 1)2 + 8

2 Find the equation of the tangent to the curve  which is parallel to the x-axis.y = x2 − 4x + 2

Solution:
Since the tangent is parallel to the x-axis, we need to find the minimum by completing the square:

   x2 − 4x + 2 = (x − 2)2
− 2

2 + 2

     = (x − 2)2
− 2

∴  x = 2min when 

∴       y = −2

The equation of the tangent to the curve, and parallel to the x-axis is y = −2

80 ALevelNotesv8Erm 07-Apr-2013



8 • C1 •  Completing the Square

8.9 A Geometric View of Completing the Square

Take a simple quadratic such as: .x2 + 8x

This expression can be represented as a diagram, as shown in the first half of the sketch below:

x 8

x 8xx2

x 4

x2x 4x

4x4 k

y = x2 + 8x

y = (x + 4)2

k = 16

y = x2 + 8x + k

The nearest perfect square for  is . From the diagram we can see that  is larger than
 by an additional amount k. Thus:

x2 + 8x (x + 4)2 (x + 4)2

x2 + 8x

 

x
2 + 8x = (x + 4)2

− k

= (x + 4)2
− 4

2

= (x + 4)2
− 16

Note how any similar quadratic such as:  can now be represented by:x2 + 8x + 7

x
2 + 8x + 7 = (x + 4)2

− 16 + 7

= (x + 4)2
− 9
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8.10 Topic Digest

Standard solution:

x
2 + bx + c = (x +

b

2)
2

− (b

2)
2

+ c

x
2 − bx + c = (x −

b

2)
2

− (b

2)
2

+ c

For a quadratic of the form: a (x + p)2 + q

y = a (x + p)2 + q

 (−p,  q)Co-ordinates of vertex

 x = −pAxis of symmetry

a > 0,  If graph is ∪ shaped, vertex is a minimum point

a < 0,  If graph is ∩ shaped, vertex is a maximum point

For a quadratic of the form: ax2 + bx + c

x = −
b

2a
;  y = −

b2

4a
+ cTurning point is when 

ax
2 + bx + c = a 


x

2 +
b

a
x +

c

a



= a


(x +

b

2a)
2

− ( b

2a)
2

+
c

a





ax
2 + bx + c = a (x +

b

2a)
2

−
b2

4a
+ c
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9.1 Deriving the Quadratic Formula by Completing the Square

The Quadratic Formula is just another method of completing the square to solve a quadratic. A sledge hammer to
crack a nut. To derive the formula, complete the square for the general form of a quadratic:

ax
2 + bx + c = 0

a (x2 +
b

a
x +

c

a) = 0

x
2 +

b

a
x +

c

a
= 0     aDivide by

(x +
b

2a)
2

− ( b

2a)
2

+
c

a
= 0    Complete the square

(x +
b

2a)
2

= ( b

2a)
2

−
c

a

(x +
b

2a)
2

=
b2

4a2
−

c

a

(x +
b

2a)
2

=
b2

4a2
−

4ac

4a2

=
b2 − 4ac

4a2

x +
b

2a
= ±

b2 − 4ac

4a2
  Take square roots

x +
b

2a
= ±

b2 − 4ac

2a

x = −
b

2a
±

b2 − 4ac

2a

x =
−b ± b2 − 4ac

2a

The roots of a quadratic are given by:

x =
−b ± b2 − 4ac

2a

It follows that with a  symbol in the formula there will be two solutions.±

 x =
−b + b2 − 4ac

2a
Solution 1)

 x =
−b − b2 − 4ac

2a
Solution 2)

Note also that:

    ax
2 + bx + c = a (x − root1) (x − root2)     

  ax
2 + bx + c = a (x −

−b + b2 − 4ac

2a ) (x −
−b − b2 − 4ac

2a )
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9.2 Examples of the Quadratic Formulae

9.2.1  Example:

1 Find the roots of: 3x2 + 17x + 10 = 0

Solution:

     3x
2 + 17x + 10 = 0

∴ a = 3, b = 17,  c = 10

x =
−b ± b2 − 4ac

2a

x =
−17 ± 172 − 4 (3) (10)

6

x =
−17 ± 289 − 120

6

x =
−17 ± 169

6

∴ x =
−17 + 169

6
=

−17 + 13

6
= −

2

3

and     x =
−17 − 169

6
=

−17 − 13

6
= −5

     x = −
2

3
,  and − 5

Working backwards we see the quadratic factorises to:

3x
2 + 17x + 10 = (3x + 2) (x + 5)

2 Find the roots of: 2x2 − 7x − 1 = 0

Solution:

   2x
2 − 7x − 1 = 0

∴  a = 2, b = −7,  c = −1

   x =
−b ± b2 − 4ac

2a

   x =
−7 ± (−7)2 − (2) (−1)

4
   Watch the signs! 

   x =
−7 ± 49 − 4 (2) (−1)

4

   x =
−7 ± 57

4

   x =
−7 + 57

4
 or x =

−7 − 57

4

   x = 3·64,  or −  0·14 
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3 Solve 5 − 8x − x2 = 0

Solution:
First, rearrange to the correct format:

  5 − 8x − x
2 = 0

   − x
2 − 8x + 5 = 0

Let a = −1, b = −8, c = 5

  x =
−b ± b2 − 4ac

2a

  x =
8 ± (−8)2 − 4 (−1) 5

−2
   Watch the signs! 

  x =
8 ± 64 − 4 (−1) 5

−2

  x =
8 ± 64 + 20

−2

  x =
8 ± 84

−2

  x = − 4 ± 21

Alternative solution (completing the square):

  − x
2 − 8x + 5 = 0

        x2 + 8x − 5 = 0

  (x + 4)2
− 16 − 5 = 0

   (x + 4)2
− 21 = 0

       (x + 4)2 = 21

         (x + 4) = ± 21

       x = − 4 ± 21

4 Solve x +
1

x
= 6

Solution:
First, rearrange to the correct format:

    x +
1

x
= 6

    x
2 +

x

x
= 6x

    x
2 − 6x + 1 = 0

    x =
−b ± b2 − 4ac

2a

    x =
− (−6) ± 36 − 4 (1) (1)

2

    x =
6 ± 32

2
=

6 ± 4 2

2

    x = 3 ± 2 2
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9.3 Finding the Vertex

See also section 8.6 Graphing − Finding the Turning Point.

Rearranging the standard quadratic formula we find:

x =
−b ± b2 − 4ac

2a

x =
−b

2a
±

b2 − 4ac

2a

Hence, we can see that the roots are either side of the vertex, where the x-coordinate of the vertex is given by:

x =
−b

2a

9.3.1  Example:

1

Vertex is when 

Vertex at (2, 3)

The quadratic is symmetrical about the line 

y = x2 − 4x + 7

x =
− (−4)

2
= 2

∴ y = 3

x = 2

3

2

7

Vertex

x

y

O

9.4 Heinous Howlers

In trying to solve something like       DO NOT set !!!!!!7 − 5x − 2x2 = 0 a = 7,  b = −5  c = 2or

Watch the signs - a very common error is to square  and end up with a negative answer.−b

9.5 Topical Tips

In finding the roots of a quadratic, if all else fails, the quadratic formulae can always be used on any quadratic,
providing that you pay attention to the signs.
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10 • C1 • The Discriminant

10.1 Assessing the Roots of a Quadratic

The roots of a quadratic are given by:

x =
−b ± b2 − 4ac

2a

The expression “ ” is part of the quadratic formula and is known as the discriminant. It determines how
many solutions the equation has, or in other words, how many times does the graph cross the x-axis. 

b2 − 4ac

Very useful when sketching graphs, to test if the graph crosses the x-axis.

If the discriminant…  Then… Roots or solutions Notes

 > 0
or

b2 − 4ac

b2 > 4ac

Graph intersects 
the x-axis twice

2 distinct real 
solutions

If the discriminant is a perfect square, 
the solution is rational and can be factorised.

 = 0
or

b2 − 4ac

b2 = 4ac

Graph intersects 
the x-axis once

1 real solution 

 x = −
b

2a

Sometimes called repeated or coincident roots.
The quadratic is a perfect square. 
The x-axis is a tangent to the curve.

 < 0
or

b2 − 4ac

b2 < 4ac

Graph does not 
intersect the x-axis

No real solutions Only complex roots, which involve imaginary 
numbers .( −1)

If the discriminant > 0

then  is positive and 

there are two real solutions: 

one involves:

 

and the other involves:

b2 − 4ac

 + b2 − 4ac

 − b2 − 4ac

If the discriminant = 0

then only one solution since both

 

are both zero.

 + 0  and − 0 

If the discriminant < 0

No real solutions are possible, as

we can’t evaluate the square root

of a negative number, (at least in

this module − there are in fact two

‘complex’ solutions - see later).
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10.2 Discriminant = 0

When the discriminant = 0, i.e. when , the quadratic is a perfect square of the form:b2 = 4ac

(px + q)2 = p
2
x

2 + 2pqx + q
2

          b2
− 4ac = (2pq)2

− 4p
2
q

2 = 0Hence:

     ∴       x = −
b

2a

In this case, the x-axis is tangent to the quadratic curve at the vertex.

Note the distinction of the discriminant being a perfect square and the quadratic being a perfect square.

10.3 Topical Tips

In the exam, note how the question is phrased.

If asked to find ‘two distinct roots’, or find ‘two distinct points of intersection’, then use: b2 − 4a > 0

For questions wanting the ‘real roots’, then use: b2 − 4a ≥ 0

For ‘equal roots’ use: b2 − 4a = 0

Questions will often ask you to show that an inequality is true. They try to disguise the question by giving an
inequality that is less than zero. Start with the basics above and you will find you will need to multiply by −1,
which changes the inequality around. (See last example below).

Note that if a line and curve intersect with equal roots, then the line must be a tangent to the curve. Recall that
setting a quadratic  is really asking you to solve two simultaneous equations of

 and . The same logic applies if you are asked to find the intersection of
  and the line .

ax2 + bx + c = 0
y = ax2 + bx + c y = 0
y = ax2 + bx + c y = mx + c

Remember that the discriminant is the bit inside the square root!

10.4 Examples

1 The equation  has two real roots. What can you deduce about the value of k.kx2 − 2x − 7 = 0

Solution:

   ∴    b2
− 4ac ≥ 0

    4 − (4k × −7) ≥ 0

    4 + 28k ≥ 0

    28k ≥ −4

    k ≥ −
4

28

    k ≥ −
1

7

2 The equation  has repeated or equal roots. Find the value of k.x2 − 7x + k = 0

Solution:

   ∴    b2
− 4ac = 0

    49 − (4 × 1 × k) = 0

    49 − 4k = 0

    4k = 49

    k = 121
4
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3 Find the set of values of k for which   has two distinct real roots.kx2 + x + k − 1 = 0

Solution:

  ∴    b2
− 4ac > 0 

    1 − (4 × k × (k − 1)) > 0

    1 − (4k (k − 1)) > 0

    1 − 4k
2 + 4k > 0

    − 4k
2 + 4k + 1 > 0

  ∴     4k
2

− 4k − 1 < 0       (1)

    4 (k2
− k −

1

4) < 0  Complete the square

    4

(k −

1

2)
2

−
1

4
−

1

4


 < 0 

    (k −
1

2)
2

−
1

2
< 0

 k = 1
2Min point of curve is at: 

From (1) find the roots by formula:

    k =
4 ± 16 − (−16)

8
=

4 ± 32

8
=

4 ± 4 2

8
=

1 ± 2

2

    ∴   
1 − 2

2
< k <

1 + 2

2

       − 0·2071 < k < 1·2071Set of boundary values:

Solution for the discriminant quadratic:

  4k2 − 4k − 1 = 0

½ ½+½Ú2½-½Ú2

k

y

The original quadratic, with the two boundary
values of k plotted.

−0·2071 < k < 1·2071 x

y

−0.207x2 + x − 0.207 − 1

1.207x2 + x + 1.207 − 1
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4 A line and curve intersect at two distinct points. The x-coordinate of the intersections can be found by the
equation:

    x
2 − 3kx + 7 − k = 0

Find the values of k that satisfy this equation.

Solution:

  ∴      b2
− 4ac > 0

    (−3k)2
− [4 × 1 × (7 − k)] > 0

    9k
2

− 28 + 4k > 0

    9k
2 + 4k − 28 > 0

            9 × 28 = 252 = 18 × 14Factors of 

    (k + 18 / 9) (k − 14 / 9) > 0

    (k + 2) (9k − 14) > 0

    ∴ k < −2,    k >
14

9
and

5 The equation  has real roots. Find the values of k.(k + 1) x2 + 12x + (k − 4) = 0

Solution:

  ∴      b2
− 4ac ≥ 0

    (12)2
− [4 (k + 1) (k − 4)] ≥ 0

    144 − [4 (k2 + k − 4k − 4)] ≥ 0

    144 − [4k
2

− 12k − 16] ≥ 0

    144 − 4k
2 + 12k + 16 ≥ 0

    − 4k
2 + 12k + 160 ≥ 0

    4k
2

− 12k − 160 ≤ 0  multiply by −1 and divide by 4

    k
2

− 3k − 40 ≤ 0

    (k + 5) (k − 8) ≤ 0

    − 5 ≤ k ≤ 8

6 The equations  and  are given. Show that .y = x2 − 8x + 12 2x − y = 13 x2 − 10x + 25 = 0

Find the value of the discriminant and what can you deduce about the first two equations.

Solution:

    y = x
2 − 8x + 12

    y = 2x − 13

  ∴  x
2 − 8x + 12 = 2x − 13

        x2 − 8x + 12 − 2x + 13 = 0

        x2 − 10x + 25 = 0

     b
2

− 4ac = (−10)2
− 4 × 25 = 100 − 100Now:

           = 0 i.e. one solution.

Deduction is that   is tangent to .2x − y = 13 y = x2 − 8x + 12
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7 Find the discriminant of the equation  and show that the equation is always positive.3x2 − 4x + 2 = 0

Solution:

   ∴    b2
− 4ac = (−4)2 − (4 × 3 × 2)

       = 16 − 24

       = −8

Therefore the equation has no real roots and does not cross the x-axis. Since the coefficient of the  term
is positive, the curve is  shaped, and so the equation is always positive.

x2

∪

8 The equation  has real roots. Show that  and find
the values of k.

(2k − 6) x2 + 4x + (k − 4) = 0 x2 − 7x + 10 ≤ 0

Solution:

  ∴      b2
− 4ac ≥ 0

    (4)2
− [4 (2k − 6) (k − 4)] ≥ 0

    16 − [4 (k2
− 14k + 24)] ≥ 0

     − 8k
2 + 56k − 80 ≥ 0

    k
2

− 7k − 10 ≤ 0   multiply by −1 & divide by 8 (reverse the inequality)

    (k − 5) (k − 2) ≤ 0

    2 ≤ k ≤ 5

10.5 Complex & Imaginary Numbers (Extension)

For those doing science or going on to further maths, it should be pointed out that whilst it is true that there are
no real solutions when , there are in fact two imaginary solutions, that involve numbers with the
square root of minus one.

b2 − 4a < 0

An imaginary number is simply the square root of minus one, which has been given the letter i or j to identify it.

Hence, if ,  we can say that the solution to an equation such as  is  or .−1 = i x2 + 1 = 0 x = ± −1 x = ± i

E.g. Solve x2 − 8x + 20 = 0

Solution:

    x
2 − 8x + 20 = 0

    x =
−b ± b2 − 4ac

2a

    x =
− (−8) ± (−8)2 − 4 × 20

2

    x =
8 ± 64 − 80

2

    x =
8 ± −16

2

    x =
8 ± 4 −1

2

    x = 4 ± 2i

In the example above,  is called a complex number, as it it made up of the imaginary number i, and two
real numbers 4, & 2.

4 ± 2i

In a complex number, such as: , the number p is called the real part and q the imaginary part.p + qi
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10.6 Topic Digest

Case 1 Case 2 Case 3

 > 0
or

b2 − 4ac

b2 > 4ac

 = 0
or

b2 − 4ac

b2 = 4ac

 < 0
or

b2 − 4ac

b2 < 4ac

Graph intersects 
the x-axis twice

Graph intersects 
the x-axis once

Graph does not 
intersect the x-axis

2 distinct real 
solutions

1 real solution 

 x = −
b

2a

No real solutions

If the discriminant is a perfect
square, the solution is rational and

can be factorised.
If the discriminant is not a

perfect square, the solution is
irrational

Sometimes called repeated or
coincident roots.

The quadratic is a perfect square. 
The x-axis is a tangent to the curve.

Only complex roots, which involve
imaginary numbers, .( −1)
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11 • C1 • Sketching Quadratics

11.1 Basic Sketching Rules for any Polynomial Function

In order to sketch any graph you should know the following basic bits of information:

j The general shape of the graph according to the type of function, (∪ or ‘ ’ shape)/\  /

j The orientation of the graph, ( , ‘ ’ or ‘ ’ shape)∪  ∩or /\  / \ /\

j The roots of the function, i.e. where it crosses the x-axis (if at all)

j Where the function crosses the y-axis, i.e. where x = 0

j The co-ordinates of the turning points or vertex, (max or minimum values)

11.2 General Shape & Orientation of a Quadratic

The general shape of a quadratic is a parabola. The orientation of the graph is determined by the sign of the 
term.

x2

+ve x2 term

−ve x2 term

y = −x2 − 2x + 15

y = x2 + 5x − 6

x x

y y

Orientation and shape of a quadratic function

11.3 Roots of a Quadratic

Using the techniques from the previous sections, find
the roots of the quadratic. The discriminant can be used
to find what sort of roots the quadratic has.
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11.4 Crossing the y-axis

The function crosses the y-axis when 

 Co-ordinates are (0, 15)

For the standard function  the graph
crosses the y-axis at c.

x = 0
∴ y = 15

ax2 + bx + c

y = −x2  − 2x + 15
y = 15

(0, 15)

x

y

O

11.5 Turning Points (Max or Min Value)

By completing the square we can find the co-ordinates of the turning point directly:

    y = x
2 + 4x − 6 = (x + 2)2

− 2
2

− 6

      = (x + 2)2
− 10

Minimum value of the function occurs when ,  which is when . The quadratic is
symmetrical about the line  and the vertex is at point (−2, −10). 

(x + 2)2 = 0 x = −2
x = −2

Note that for any other value of x then the  term is positive, so confirming that  represents a
minimum.

(x + 2)2 x = −2

Alternatively, from the quadratic formula:

 y x = − 
b

2a
Min or max value of is when 

        For 

  

 
       

y = x2 + 4x − 6

 y x = −
4

2
= −2       Min value of is when 

y = (−2)2 + 4 × (−2) − 6 = −10

y = x2 + 4x − 6

Min value when x = −2 (−2, −10)

x

y

O
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11 • C1 •  Sketching Quadratics

11.6 Sketching Examples

11.6.1  Example:

1 Sketch the following quadratic: y = x2 + 6x − 12

Solution:
1) Note the shape of the graph: ∪
2) Crosses the y-axis at −12

This quadratic cannot be solved using basic factorisation so complete the square:

    x
2 + 6x − 12 = (x +

6

2)
2

− (6

2)
2

− 12

       = (x + 3)2
− 9 − 12

       = (x + 3)2
− 21

∴ x = −3A min is formed at 

∴ (−3, −21)Co-ordinates of the vertex is 

 (x + 3)2
− 21 = 0The curve crosses the x-axis at

    (x + 3)2 = 21

    x + 3 = ± 21

    x = −3 + 21 = 1·58 (1.6 to 2 sf )

    x = −3 − 21 = −7·58 (−7.6 to 2 sf )

Sketch and label, with all co-ordinates:

Min value when x = −3 (−3, −21)

x

y

O

(−12, 0)

y = x2 + 6x − 12

(1.6, 0)(−7.6, 0)
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2 Sketch the following function: f (x) = (x + 2) (x2 − x − 6)

Solution:
Factorise the quadratic part:

    (x2 − x − 6) = (x + 2) (x − 3)

∴   f (x) = (x + 2) (x + 2) (x − 3)

Roots are at x = −2,  x = 3

Note the double root and its effect on the sketch.

When x = 0,  f (0) = 2 × 2 × (−3) = −12

4-4 -3 -2 -1 1 2 3

-20

-15

-10

-5

5

10y = (x+2)(x+2)(x−3)

x

y

(0, −12)

(−2, 0) (3, 0)

11.7 Topical Tips

It is perhaps worth pointing out that a quadratic of the form  will always have the same roots
irrespective of the value of k.

k (x + 2) (x − 3)

y

x

y = (x + 2)(x −3)

-4 2 4

-5

-10

-15

5

10

-2

y = 2(x + 2)(x −3)
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12 • C1 • Further Quadratics

12.1 Reducing Other Equations to a Quadratic

You need to be able to recognise an equation that you can be convert to a standard quadratic form in order to
solve. Just be aware that not all the solutions found may be valid.

Equations of the following forms can all be reduced to a simpler quadratic:

x
4 − 9x

2 + 18 = 0

8x

x + 3
= x − 3

x
2/3 − x

1/3 − 12 = 0

2 x + x − 24 = 0

18

x2
+

3

x
− 3 = 0

12.2 Reducing to Simpler Quadratics: Examples

12.2.1  Example:

1 Solve the equation: x4 − 9x2 + 18 = 0

Solution:
Let u = x2

 x
4 − 9x

2 + 18 ⇒ u
2 − 9u + 18 = 0

 u
2 − 9u + 18 = 0

 (u − 3) (u − 6) = 0

∴ u = 3 or  u = 6

∴ x
2 = 3 or x

2 = 6

 x = ± 3 or x = ± 6

2 Solve 
8x

x + 3
= x − 3

Solution:

 
8x

x + 3
= x − 3

 8x = (x − 3) (x + 3)

 8x = x
2 − 9

 x
2 − 8x − 9 = 0

 (x − 9) (x + 1) = 0

 x = 9 or x = 1
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3 Solve the equation: 

(Graph produced for reference only - not usually
given in the question)

y

x
64

−12

y = x2/3 − x1/3− 12

x2/3 − x1/3 − 12 = 0

Solution:

 u = x
1/3Let 

 x
2/3 = (x1/3)2

N.B.

 x
2/3 − x

1/3 − 12 ⇒ u
2 − u − 12 = 0

 u
2 − u − 12 = 0

 (u − 4) (u + 3) = 0

∴ u = 4 or  u = −3

∴ x
1/3 = 4 or x

1/3 = −3

∴ x = 4
3 or  (−3)3

∴ x = 64 or − 27

The only solution is x = 64

4

Solve 

(Graph produced for reference only - not usually given in the
question)

y

x
16

−24

y = x + 2Úx− 24
2 x + x − 24 = 0

Solution:

 u
2 = xLet 

∴     u = x

 x + 2 x − 24 = 0

 u
2 + 2u − 24 = 0

 (u + 6) (x − 4) = 0

∴ u = −6 or u = 4

However, values of x less than zero are not allowed because of the square root term, therefore, a
negative value of u is also not allowed.

∴ x = u
2 ⇒ x = 16

Substitute back into the original equation to check:

16 + 2 × 4 − 24 = 0 
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Alternatively, rearrange, then square to remove the root

   (2 x)2
= (24 − x)2

   4x = (24 − x)2

   4x = 24
2

− 48x + x
2

   x
2 − 52x + 24

2 = 0

   (x − 16) (x − 36) = 0

   x = 16 or 36

Substitute the values back into the original equation to test for a valid answer.

5
Solve 

y

x9−1

y = 8x/(x+3) − x + 3

3

8x

x + 3
= x − 3

Solution:
8x

x + 3
= x − 3

8x = (x − 3) (x + 3)

8x = x
2 − 9

x
2 − 8x − 9 = 0

(x − 9) (x + 1) = 0

x = 9 or x = −1

6
Solve 

Solution:
Multiply by x2

y

x3−2

y = 18/x2 − 3/x − 3

18

x2
+

3

x
− 3 = 0

18

x2
+

3

x
− 3 = 0

18 + 3x − 3x
2 = 0

3x
2 − 3x − 18 = 0

x
2 − x − 6 = 0

(x − 3) (x + 2) = 0

x = 3 or x = −2
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7
Solve 8x

3 +
1

x3
= −9

Solution:

   8x
3 +

1

x3
= −9

   8x
3 × x

3 +
x3

x3
= −9 × x

3

   8x
6 + 1 = −9x

3

   8x
6 + 9x

3 + 1 = 0

u = x
3Let 

   8u
2 + 9u + 1 = 0

   (8u + 1) (u + 1) = 0

   u = −
1

8
 or u = −1

   x
3 = −

1

8
 or x

3 = −1

   x = 3 −
1

8
 or x = 3

−1

   x = −
1

2
 or x = −1

8 Given that  show that  can be written as y = x1/3 2x1/3 + 4x−1/3 = 9 2y2 − 9y + 4 = 0

Solution:

   2x
1
3 +

4

x
1
3

= 9      Rewrite equation

   2y +
4

y
= 9         Substitute

   2y
2 + 4 = 9y

   2y
2 − 9y + 4 = 0     QED

Solve for x:

   (2y − 1) (y − 4) = 0

   y =
1

2
  or  y = 4

    y = x
1
3but

   x
1
3 =

1

2
  or  x

1
3 = 4

     x =
1

8
  or  x = 64Hence
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9

10
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12.3 Pairing Common Factors

For some expressions it is possible to find solutions by taking out common factors from pairs of terms.

12.3.1  Example:

1 Factorise: st + 3t − 5s − 15

   st + 3t − 5s − 15

   st − 5s + 3t − 15

   s (t − 5) + 3 (t − 5)

   (t − 5) (s + 3)

2 Factorise: 3mn − 6m − n2 + 2n

   3mn − 6m − n
2 + 2n

   3m (n − 2) − (n2 − 2n)

   3m (n − 2) − n (n − 2)

   (n − 2) (3m − n)
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13.1 Solving Simultaneous Equations

At GCSE level we learnt that there were three methods to solve linear simultaneous equations. These are the:

j Elimination method

j Substitution method

j Graphical method

At A level, simultaneous equations are extended to include solving a linear and a quadratic equation
simultaneously. The substitution method is the method of choice, although a sketch of the functions involved is
always helpful to ensure correct thinking.

With two linear simultaneous equations there can only be one solution at the intersection of the two lines,
however, with a linear and a quadratic equation there may be two, one or no solution available. 

In a sense, solving a normal quadratic for its roots is the same as solving for two equations, the given quadratic
function and the linear equation of .y = 0

Two solutions

One solution 
No solution

y

xO

y

xO

y

O Line is tangent
to curve

Solutions for a linear and a quadratic equation

13.2 Simultaneous Equations: Worked Examples

13.2.1  Example: 

1 Find the co-ordinates where  meets y = 2x − 1 y = x2

   2x − 1 = x
2 ⇒  x

2 − 2x + 1 = 0

   (x − 1) (x − 1) = 0

 ∴     x = 1

   y = 2 − 1

   y = 1

   = (1,1)  ←  Answer: tangent

Since there is only one solution (or two equal solutions) then the line must be a tangent to the
curve.
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2 Find the co-ordinates of the points where  meets .y = x2 − 2x − 6 y = 12 + x − 2x2

Solution:

   12 + x − 2x
2 = x

2 − 2x − 6

   3x
2 − 3x − 18 = 0

   x
2 − x − 6 = 0

   (x − 3) (x + 2) = 0

   x = −2,   x = 3and

   y = 4 + 4 − 6 = 2

   y = 9 − 6 − 6 = −3

x = −2,  y = 2,  x = 3,  y = −3When and when 

= (−2,  2)  (3, −3)Answer: and 

3 Find the co-ordinates of the points where  meets .x + y = 6 x2 − 6x + y2 = 0

   x + y = 6 ⇒  y = 6 − x

   x
2 − 6x + (6 − x)2 = 0

   x
2 − 6x + 36 − 12x + x

2 = 0

   2x
2 − 18x − 36 = 0

   x
2 − 9x − 18 = 0

   (x − 3) (x − 6) = 0

  ∴    x = 3 or 6

   y = 6 − x

  ∴    y = 3 or 0

(6,  0)  and (3,  3)Co-ordinates of intersection are 

x2 − 6x + y2 = 0

(3, 3)

(6, 0)

y

xO

4 Prove that  is tangent to y = 6x − 5 y = x2 + 2x − 1

 x
2 + 2x − 1 = 6x − 5Let

  x
2 − 4x + 4 = 0

   (x − 2) (x − 2) = 0

∴     x = 2  ⇒  y = 12 − 5 = 7

Only one solution, therefore tangent is at point (2, 7)
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14.1 Intro

An inequality compares two unequal quantities.

The method of solving inequalities varies depending on whether it is linear or not. All solutions of inequalities
give rise to a range of solutions.

14.2 Rules of Inequalities

j Numbers can be added or subtracted to both side of the inequality as normal

j Both sides of the inequality can be multiplied or divided by a positive number, as normal

j If both sides are multiplied or divided by a negative number, the inequality is reversed

j If both sides of the inequality are transposed the inequality is also reversed

e.g.  is the same as .y < 6 6 > y

   a + k > b + k kfor all values of 

    ak > bk kfor all +ve values of 

    ak < bk kfor all −ve values of 

Note that the direction of the symbols indicates direction on the number line.

14.3 Linear Inequalities

For a linear inequality, the solution has only one range, and only one boundary.

14.3.1  Example: 1 

1   
3 − 5x

4
≥ −8Solve:

   3 − 5x ≥ −32

     − 5x ≥ −35

       x ≤ 7

2 Find the range of values for x that satisfy both the inequalities  and
.

7x − 4 ≤ 8x − 8
3x > 4x − 8

    7x − 4 ≤ 8x − 8  (1)

    3x > 4x − 8    (2)

 7x − 8x ≤ 4 − 8Evaluate (1)

        − x ≤ −4

        x ≥ 4

        − x > −8 ⇒  x < 8Evaluate (2)

+8+4

Combine results from (1) & (2): 4 ≤ x < 8
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14.4 Quadratic Inequalities

For a quadratic inequality, the solution has one or two ranges of solutions, with two boundaries.

There are two methods available for solving inequalities for quadratic or higher powers:

j Sketching: Factorise, sketch and read off the required regions

j Critical Values Table: Factorise, find critical values, construct table and read off the required regions

Note that if the quadratic has a positive  term and arranged to be < or  0 then there is only one range for the
solution. If the inequality is > or  0 then there are two ranges for the solution. 

x2 ≤
≥

14.4.1 Sketching Method

14.4.1.1  Example:

1 e.g. Solve: (x − 1) (x + 2) (x + 8) > 0

This means we want any regions above the x-axis, (darker line and open points of intercept). Draw
a sketch to indicate the correct regions.

−8 −2 1

y

x

−8 < x < −2  x > 1AND

2 Solve 2x2 + 3 − 1 < 0

This means the region below the x-axis (darker line), not including the axes, (hence the open points
at the intercept).

Factorising gives:

   (2x − 1) (x + 1) < 0

0.5−1

y

x

∴  Answer : −1 < x <
1

2

106 ALevelNotesv8Erm 07-Apr-2013



14 • C1 •  Inequalities

14.4.2 Critical Values Table

This is a longer method, but one which is recommended when:

j you don’t know what the sketch would look like or 

j you are told to in the question.

Typical order of method:

j Rearrange for 0

j Factorise

j Critical values are where each factor = 0

j Arrange critical values in order (similar to a number line)

j Make table, marking positive and negative segments

 

14.4.2.1  Example:

1 Solve using table of critical values the inequality x (x + 3) (x − 4) ≥ 0

Critical values are: 0, −3, and 4

Build table and note when expression is :≥ 0

Critical values: −3 0 4

x < −3 −3 < x < 0 0 < x < 4       x > 4

x − − + +

x + 3 − + + +

x − 4 − − − +

(x − 1) (x + 2) (x + 8) − + − +

 

Answer: −3 ≤ x ≤ 0,   x ≥ 4AND

2 Find the values of k for which  has two distinct roots:kx2 + 3kx + 5 = 0

  b
2

− 4ac > 0 ⇒  (3k)2
− 4 × k × 5 > 0

9k
2

− 20k > 0 ⇒  k (9k − 20) > 0

Critical values are 0, and 
20

9

k < 0 0 < k <
20

9
k >

20

9

k − + +

9k − 20 − − +

k (9k − 20) > 0 + − +

Answer: k < 0      k > 20AND
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14.5 Inequality Examples

14.5.1  Example: 

1 Find the values of k for which the quadratic  has no roots.x2 + (k − 1) x + k + 2 = 0

Solution:
Consider the discriminant when less than 0:

   b
2

− 4ac < 0 ⇒  (k − 1)2
− 4 (k + 2) < 0

   k
2

− 2k + 1 − 4k − 8 < 0

   k
2

− 6k − 7 < 0

   (k − 7) (k + 1) < 0

+7−1

y

x

Answer: −1 < k < 7

2 A farmer has 90m of fencing and needs to construct a fence around a rectangular piece of ground,
that is bounded by a stone wall. With a width of w and length L, what is the range of values that L
can take if the area enclosed is a minimum of 1000m2.

Solution:
Area: 

Length of fence:

Lw ≥ 1000

2w + l = 90

∴ 2w = 90 − L

w = 45 −
L

2 L

ww

 ∴     L (45 −
L

2 ) ≥ 1000

   45L −
L2

2
− 1000 ≥ 0

   90L − L
2 − 2000 ≥ 0

   L
2 − 90L + 2000 ≤ 0

Critical values are:

   L =
−b ± b2 − 4ac

2a

   L =
− (−90) ± 902 − 4 × 2000

2

   L = 45 ± 5

   40 ≤ L ≤ 50Hence: 
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3 Find the values of x for which:    and 5x + 1 > 7x − 7 x2 − 6x ≤ 16

Solution:

   5x + 1 > 7x − 7

   5x − 7x > −1 − 7

   − 2x > −8

   x < 4
   

   x
2 − 6x ≤ 16

   x
2 − 6x − 16 ≤ 0

   (x − 8) (x + 2) ≤ 0

   ∴ x ≤ 8  x ≥ −2

   − 2 ≤ x ≤ 8 

Combining the two inequalities:

   − 2 ≤ x < 4

4 This is an example that includes simultaneous equations, discriminants and inequalities.

A curve and a straight line have the following equations:  and .y = x2 + 5 y = k (3x + 2)
Find an equation in terms of x and k, that shows the x-coordinates of the points of intersection. If
this equation has two distinct solutions, write an equation to show this and solve any inequality.

Solution:

   x
2 + 5 = k (3x + 2)

   x
2 − 3kx + 5 − 2k = 0

b
2

− 4ac > 0For 2 solutions 

   (−3k)2
− 4 (5 − 2k) > 0

   9k
2 + 8k − 20 > 0

Solve to find the critical values:

   9k
2 + 8k − 20 = 0

   (x −
10

9 ) (x +
18

9 ) = 0

   (9x − 10) (x + 2) = 0

   x =
10

9
  x = −2AND

∴ k < −2,   k >
10

9
AND

Factors

9 × 20 = 180

9 × 20

−10 × +18 ⇒ +8

12 × 15

10/9−2

y

x

aeqfal
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14.6 Heinous Howlers

Do not cross multiply by  since you don’t know if x is −ve or +ve, however multiplying by  will
be fine, as it gives a positive result in each case.

(x + a) (x + a)2

14.6.1  Example:

    
x − 3

x + 5
< 4

          x − 3 <⁄ 4 (x + 5)   cNot this:

   
x − 3

x + 5
× (x + 5)2 < 4 (x + 5)2

But this:

∴      (x − 3) (x + 5) < 4 (x + 5)2

   (x − 3) (x + 5) − 4 (x + 5)2 < 0

   (x + 5) [(x − 3) − 4 (x + 5)] < 0

   (x + 5) (x − 3 − 4x − 20) < 0

   (x + 5) (−3x − 23) < 0

   − (x + 5) (3x + 23) < 0

   (x + 5) (3x + 23) > 0

   x > −5  x < −7
2

3
AND

Do not get the inequality reversed.

So DO NOT put  when you mean . 3 < k < −2 −2 < k < 3

Think of the number line (or x-axis) when writing inequalities. 

14.7 Topical Tips

For any quadratic with a +ve x2 term, if the inequality is < 0 or ≤ 0 then there is only one region of inequality e.g.
−1 < k < 7

If the inequality is > 0 then there are two regions of inequality e.g. k < −2,      k > 10AND
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15.1 Standard Graphs

You must be familiar with all these basic graphs. From these basic graphs, other graphs can be deduced using
transformations. In addition to direct questions on sketching graphs, it is well worth sketching a graph when
answering a question, just to clarify your thinking. (‘A picture is worth a 1000 words’ as they say). 

15.2 Asymptotes Intro

Asymptotes are straight lines on a graph that a curve approaches, but never quite reaches and does not cross.
They represent values of x or y for which the function has no solution. 

A vertical asymptote of  is drawn when the function  approaches ± infinity, as x approaches a. Written
as   as .

x = a f (x)
f (x) → ± ∞ x → a

A horizontal asymptote of  is drawn when the function  approaches b, as x approaches ± infinity.
Written as  as .

y = b f (x)
f (x) → b x → ± ∞

Asymptotes are usually associated with rational functions (i.e. fractions) and exponentials.

Example:

Draw the asymptotes for 

Function has no solution (undetermined) when

 or  and 

If  then 

Asymptotes appear at:

 ,  and 

See later subsection on Finding Asymptotes.

y =
2x2

(x2 − 1)

y =
2x2

(x2 − 1)
=

2x2

(x − 1) (x + 1)

x = 1 x = −1 y → ± ∞

x → ± ∞ y →
2 × ∞

∞
→ 2

x = 1 x = −1 y = 2

x

y

2

-1 1

 2x2

 (x2 − 1) 
 y = 

Asymptotes

15.3 Power Functions

Power functions of degree n have the general form of:

y = x
n

j All even-degree power functions ( ) are classed as even functions, because the axis of line
symmetry is the y-axis i.e. they are symmetrical about the y-axis. Curves pass through the origin and
through the points (−1, 1) and (1, 1)

y = xeven

j All odd-degree power functions ( ) are classed as odd functions, because they have rotational
symmetrical about the origin. Curves pass through the origin and through the points (−1, −1) and (1, 1)

y = xodd

j All even-degree polynomials behave like quadratics with the typical ‘bucket’ shape, and all odd-degree
polynomials behave like cubics with a typical ‘ ’ shape. As the power increases, so the shape of the
curve becomes steeper.

/\  /

j The sign of the highest power determines the orientation of the graph:

j For even-degree power functions, a positive coefficient gives a ∪ (upright bucket) shape whilst a

negative coefficient gives a ∩ (empty bucket) shape. 

j For odd-degree power functions, a positive coefficient gives the typical ‘ ’ shape, whilst a
negative coefficient gives a ‘ ’ shape.

/\  /
\ /\

j Note the starting points of the curves on the LHS.
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15.3.1 Even Power Functions

A basic even power function function is given by:

y = x
even

The function and graph is ‘even’ because the axis of line symmetry is the y-axis and:

f (x) = f (−x)

(This is a transformation with a reflection in the y-axis).

Curves with a +ve coefficient pass through the origin and through the points (−1, 1) and (1, 1)

x

y

y = x2

(−1, 1) (1, 1)1

2

3

4

5

-3 -2 -1 1 2 3

y = x4
y = x16

0

6

7

Even Power Functions � positive coefficient

Curves with a −ve coefficient pass through the origin and through the points (−1, −1) and (1, −1)

x

y

y = −x2

(−1,−1) (1,−1)−1

−2

−3

−4

−5

-3 -2 -1 1 2 3

y = −x4

0

−6

−7

y = −x16

Even Power Functions � negative coefficient
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15.3.2 Odd Power Functions

A basic odd power function is given by:

y = x
odd

Odd power functions have a familiar ‘ ’ shape or if x has a negative coefficient a ‘ ’ shape./\  / \ /\

The function and graph is ‘odd’ because it has rotational symmetry about the origin and:

f (x) = −f (−x)

[This is equivalent to two transformations with a reflection in both the x-axis and y-axis].

Curves with a +ve coefficient pass through the origin and through the points (−1, −1) and (1, 1). 

Curves with a −ve coefficient pass through the origin and through the points (−1, 1) and (1, −1).

x

y

y = x2

(−1, −1)

(1, 1)1

2

3

4

5

10

-3 -2 -1 1 2 3

y = x3

y = x15

0

y = x5

−1

−2

−3

−4

−5

x

y

y = −x2

(1, −1)

(−1, 1) 1

2

3

4

5

10

-3 -2 -1 1 2 3

y = −x15

0

y = −x5

−1

−2

−3

−4

−5

y = −x3

Odd Power Functions
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15.3.3 Quadratic Function

A basic quadratic function is given by:

  y = x
2

This is a second order polynomial function, also called
a parabola.

The function and graph is ‘even’ because the axis of
line symmetry is the y-axis and:

  f (x) = f (−x)

A +ve coefficient of  gives the familiar ∪ shape,
with one minimum value for the function.

x2

x

y

y = x2

The graph becomes an ‘empty bucket’ or ∩ shape
when the squared term is negative:

  y = −x
2

A −ve coefficient of  gives one maximum value for
the function.

x2

x

y

y = −x2

15.3.4 The Cubic Function

A basic cubic function is given by:

    y = x
3

This is a third order polynomial function, with has a
familiar ‘ ’ shape./\  /

The function and graph is ‘odd’ and has rotational
symmetry about the origin and:

   f (x) = −f (−x)

x

y
y = x3

y = x2

The graph becomes an ‘mirror image’ with a ‘ ’
shape, when the cubed term is negative:

\ /\

   y = −x
3

x

y

y = −x3

y = x2
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15.3.5 The Quartic Function

A basic Quartic function is given by:

  y = x
4

This is a fourth order polynomial function.

The function and graph is ‘even’ because the axis of
symmetry is the y-axis and:

  f (x) = f (−x)

A +ve coefficient of  gives the familiar ∪ shape. x2

x

y

y = x4

y = x2

The graph becomes an ‘empty bucket’ or ∩ shape
when the power term is negative:

   y = −x
4

x

y y = x2

y = −x4

15.3.6 The Fifth Order Function

This is a fifth order polynomial function, with a
familiar ‘ ’ shape. The basic function is:/\  /

    y = x
5

The function and graph is ‘odd’ and has rotational
symmetry about the origin and:

   f (x) = −f (−x)

x

y
y = x5

y = x2

The graph becomes an ‘mirror image’ with a ‘ ’
shape, when the power term is negative:

\ /\

   y = −x
5

 

x

y

y = −x3

y = x2
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15.3.7 General Polynomial Curves

The previous graphs have been pure power functions with only one term. Adding more terms to the power
function changes the shape of the curve somewhat, but the overall shape of the curve remains. 

j The overall shape of a general polynomial graph is determined by the highest power less one:

j A cubic function will take a shape with two turning points ‘ ’, a fifth order function will have 4
turning points ‘ ’ etc. 

/\  /
/\  /\ /

j A quartic function will take on a typical ‘ ’ shape with 3 turning points and so on.\  /\ /

j Note that some of these turning points may be disguised as inflection points or coincident roots, see the
graph for  for example (more in C2)y = x4

Function Order Shape Turning Points

ax2 + bx + c Second ∪ 1

ax3 + bx2 + cx + d Third /\  / 2

ax4 + bx3 +… Fourth \  /\ / 3

ax5 + bx4 +… Fith /\  /\ / 4

etc

A cubic equation has a rotational order of symmetry of 2, about the point where x = −
b

3a
For a cubic equation with factors p, q, and r, i.e. , and if any two factors are the
same, then the x-axis will be tangent to the curve at that point.

y = (x − p) (x − q) (x − r)

4-4 -3 -2 -1 1 2 3

-20

-15

-10

-5

5

10

15

20

y = (x+3)(x−1)(x−2)

x

y

Cubic or Third Order Polynomial

4-4 -3 -2 -1 1 2 3

25

-20

-15

-10

-5

5

10

15

20

y = (x+3)(x−1)(x−2)(x−5)

5

y

x

Fourth Order Polynomial
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15.4 Roots and Reciprocal Curves

15.4.1 Square Root Function

The basic Square Root function is:

  y = x = x
1
2

 The square root function has no symmetry.

The function is neither even nor odd.

x

y

y = x½

Inverse Square Root Function

  y =
1

x
= x

−1
2

The graph has rotational symmetry about the origin,
so this function is odd.

Asymptotes at the x-axis and y-axis.

x

y

y = x −½

15.4.2 Reciprocal Functions

Inverse or reciprocal function:

  y =
1

x
= x

−1

The graph has rotational symmetry (order 2) about the
origin,  so this function is odd.

Asymptotes at the x-axis and y-axis.

-3 -2 -1 1 2 3

-40

-30

-20

-10

10

20

30

40

y = x −1

x

y

   y =
1

x2
= x

−2

The function and graph is ‘even’ because the axis of
line symmetry is the y-axis and so this function is odd.

Asymptotes at the x-axis and y-axis.

-3 -2 -1 1 2 3

-40

-30

-20

-10

10

20

30

40

y = x −2

x

y
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15.5 Exponential and Log Function Curves

15.5.1 Exponential Function

    y = e
x

Asymptote at the x-axis. Intercept at (0, 1)

x

y

y = ex

(0, 1)

  y =
1

ex
= e

−x

Asymptote at the x-axis. Intercept at (0, 1)

x

y

(0, 1) y = e−x

15.5.2 Log Function

   y = ln (x)

Asymptote at the y-axis. Intercept at (1, 0)

x

y

y = ln(x)

(1, 0)

   y =
1

ln (x)
= ln (−x)

Asymptote at the y-axis. Intercept at (−1, 0)

x

y

y = ln(−x)

(−1, 0)
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y

x(1, 0)

y = ln(x)

(0, 1)

y = ex

y = x

Inverse nature of ex and  ln x

15.6 Other Curves

Often appears in various questions, it is not a function in its own right as it is made up of a relation between
 and , joined at the origin.y = x y = − x

x

y

y2 = x
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15.7 Finding Asymptotes

I’m not sure if this is explicitly on the syllabus, but it is extremely useful stuff to know when sketching graphs.

An Asymptote is a line on a graph that the curve of a function approaches but never quite reaches. It is a limit
beyond which the curve cannot pass.

Asymptotes are generally associated with rational functions (i.e. ratio, aka a fraction − geddit?)

There are three sorts of asymptote to consider, plus one associated part which is a ‘hole’: 

j A vertical asymptote

j A horizontal asymptote

j A slanting asymptote

j A ‘hole’ in the function curve

For A-level purposes only the vertical & horizontal asymptotes probably need be considered, but you might as
well learn the whole story.

15.7.1 The Vertical Asymptote

A vertical asymptote is one in which the function tends toward infinity for a particular value or values of x,
which is why they are generally associated with rational functions. (Note that not all rational functions have
asymptotes).

To find a vertical asymptote and its equation:

j Put the top and bottom expressions in factored form

j Cancel any common factors (but see later)

j Find the values of x for which the function becomes undefined, by setting the denominator (the bottom

bit) to zero and solving for x.

Example 1
f (x) =

3x + 2

x − 4
  f (4) =

14

0
→ ∞   

The function is undefined when  or when (x − 4) = 0 x = 4

We can see that as  then the denominator becomes very small, and therefore 
will becomes very large and so , as .

x → 4 f (x)
f (x) → ∞ x → 4

This will give us a vertical asymptote at .x = 4

-20 -15 -10 -5 0 5 10 15

-10

-5

5

10

x

y

x = 4
Vertical Asymptote3x + 2

(x − 4)
y =
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Example 2
f (x) =

3x + 2

x2 − 9
=

3x + 2

(x − 3) (x + 3)
  

  f (3) =
11

0
→ ∞    f (−3) =

−7

0
→ − ∞   

This function is undefined when  or when (x2 − 9) = 0 x = ± 9 x = ±3or 

Factorising the denominator helps to visualise this.

This will give us a vertical asymptotes at  and .x = 3 x = −3

-20 -15 -10 -5 0 5 10 15

-10

-5

5

10

x

y

x = 3
Vertical Asymptote

x = −3
Vertical Asymptote

3x + 2

(x2 − 9)
y =

Example 3
f (x) =

3x + 2

x2 + 9
    

Setting the denominator to zero, means that:

  and so   x2 + 9 = 0 x = ± −9 = ±3 −1

The denominator cannot be factorised as it has imaginary roots. As such, there are no
asymptotes.

-20 -15 -10 -5 0 5 10 15

-5

5

x

y

No Vertical Asymptote

3x + 2

(x2 + 9)
y =
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15.7.2 The Horizontal Asymptote

Horizontal Asymptotes are found by testing the function for very large values of x.

The position of the horizontal asymptote will depend on the degree of both the denominator and the numerator. It
is recommended that the expressions should be in the standard unfactored form for this part.

There are three cases to look at:

j Degree of denominator and numerator are equal — Horizontal asymptote

j Degree of denominator > numerator           — Horizontal asymptote of y = 0

j Degree of denominator < numerator           — No Horizontal asymptote, but a slant one possible.

To find horizontal asymptotes:

j Put the top and bottom expressions in their standard unfactored form

j Test the function for very large values of x  (i.e. x → ∞ ) 

Example 1 Take our previous first example: 

f (x) =
3x + 2

x − 4
   

The degree of denominator and numerator are equal.

If x is very large (i.e. x → ∞ ) then only the highest order terms in the numerator and
denominator need to be considered, since lower order terms become irrelevant.

∴ f (x) =
3x + 2

x − 4
 x → ∞ ∴ f (x) →

3x

x
= 3

Alternatively, divide all the terms by the highest order x in the denominator:

f (x) =
3x + 2

x − 4
=

(3 + 2
x)

(1 − 4
x) ∴ x → ∞ f (x) →

(3 + 0)
(1 − 0) = 3as 

We can say that as x → ∞     
2

x
 & 

4

x
 → 0 ∴     f (x) → 3 

Similarly,   as x → − ∞ 
2

x
 & 

4

x
→ 0 ∴     f (x) → 3

So we have a horizontal asymptote at .y = 3

-20 -15 -10 -5 0 5 10 15

-10

-5

5

10

x

y

x = 4
Vertical Asymptote

y = 3
Horizontal Asymptote

3x + 2

(x − 4)
y =
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Example 2 In this example, the degree of denominator > numerator.

When x → ∞ then consider only the higher order terms:

f (x) =
3x + 2

x2 − 4
 x → ∞ f (x) →

3x

x2
=

3

x
= 0as 

 x2Alternatively, divide all the terms by the highest order x in the denominator;

f (x) =
3x + 2

x2 − 4
=

(3
x + 2

x2)
(1 − 4

x2) x → ± ∞ f (x) →
(0 + 0)
(1 − 0) = 0As 

We can say that as x → ∞     
3

x
 ;  

2

x2
  & 

4

x2
→ 0 ∴     f (x) → 0 

Similarly,   as x → − ∞ 
3

x
 ;  

2

x2
  & 

4

x2
→ 0 ∴     f (x) → 0

So we have a horizontal asymptote at .y = 0

Example 3 This example looks at an exponential function. Plotting is made easy once the asymptote
is found.

   f (t) = 3 − e
−0·5t

  lim
t → ∞

 f (t) = lim
t → ∞ (3 −

1

e0·5t ) = 3

Since  becomes close to zero when t increases to approximately 10, then the limit
tends to 3 for values of .

e−0·5t

t > 10

x

y

y = 3 − e−0.5t(0, 2)

1

3

5

123



My A Level Maths Notes

15.7.3 The Slant or Oblique Asymptote

A slant or oblique asymptote may be found when the degree of denominator is one less than the numerator. 

f (x) =
axn + bx…

sxn − 1 + tx…
In this case the function has to be rearranged by doing a partial long division.

Example 
f (x) =

3x3 + 2x − 6

x2 − 4

Solution:
Since the degree of denominator is one less than the numerator, do a partial long division.
Division only has to be completed until the remainder is one degree less that the
denominator.

    3x

x2 − 4 ) 3x3 +   0x2 + 2x − 6
  

 3x3 by x2 = 3xDivide

   3x3 +   0x2 − 12x  (x2 − 4)  by  3xMultiply

                             14x − 6 Subtract

                              14x
x2  14x by x2 Dividing gives a small term

     Once the degree is small stop dividing 

∴ f (x) = 3x −
14x − 6

x2 − 4

x → ∞ f (x) → 3xWhen 

 y = 3xThe equation of the asymptote is

Alternative Solution:

 x2 :Alternatively, divide all the terms by

f (x) =
3x3 + 2x − 6

x2 − 4
=

3x + 2x
x2 − 6

x2

1 − 4
x2

∴ x → ∞ f (x) →
(3x + 0 − 0)

(1 − 0) = 3xas 

So we have a slant asymptote of 

Note also the vertical asymptotes at 

since 

y = 3x

x = ± 2

(x2 − 4) = (x − 2) (x + 2)

-10 -5 0 5 10 15 x

-30

-20

-10

10

20

30

x = 2  &  x = −2
Vertical Asymptotes

y = 3x
Slant Asymptote

3x3 + 2x − 6

(x − 4)
y =
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15.7.4 Function is Undefined at a Point (a Hole)

This is really an extension to the rules discussed with regard to vertical asymptotes.

Writing the function in its factored form will show if there are any common terms in the denominator and
numerator. Although these factors cancel out and there is no vertical asymptote with these factors, they still
produce a point that is undefined.

Example 
f (x) =

(3x + 2) (x + 3)
(x − 4) (x + 3)

   

The function is undefined when  or when .(x − 4) = 0 (x + 3) = 0

Evaluating the function for these two values gives:

  f (4) =
14 × 7

0
→ ∞   f (−3) =

−7 × 0

0
=

0

0

This will give us a vertical asymptote at , however there is no asymptote at
.

x = 4
x = −3

 is undefined at that point, but values either side are unaffected, thus creating a hole.f (−3)
(Note: most graphing apps will not show this).

-20 -15 -10 -5 0 5 10 15

-10

-5

5

10

x

y

x = 4
Vertical Asymptote

y = 3
Horizontal Asymptote

Undefined for
x = −3

(3x + 2)(x + 3)

(x − 4)(x + 3)
y =
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15.8 Worked Examples

15.8.1  Example:

1

2
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16 • C1 • Graph Transformations
 C1 /  C3 Combined

16.1 Transformations of Graphs

A transformation refers to how shapes or graphs change position or shape. Knowing how transformations take
place allows for the mapping of a standard function (see previous section) to a more complex function.

Transformations considered here consists of :

j Translations parallel to the x-axis or y-axis

j One way stretches parallel to the x-axis or y-axis

j Reflections in both the x-axis & y-axis

Other transformations include enlargements, rotations and shears, but these are not covered specifically.

Using the equation for a semicircle to illustrate the various transformations will give a good grounding on how to
apply them. The equation of a semicircle, radius 3, centred at (0, 0) is:

y = 9 − x2

It is important to become familiar with function notation, as questions are often couched in these terms. 

For example: ‘The function  maps to . Describe the transformation.’ It is also important to learn the
correct phraseology of the answers required, (see later).

f (x) f (x) + 2

In function notation, our equation above can be written as:

f (x) = 9 − x2

where  represents the output of the function and x the input of the function.f (x)

Any changes to the input, represent changes that are with respect to the x-axis, whilst any changes that affect the
whole function represent changes that are with respect to the y-axis.

It is also useful to think of the function as:

f (x) = 9 − (x)2

The addition of the brackets, reminds us that changes to the input must be applied as a substitution. Thus, if we
want to map  to  then the function becomes:f (x) f (x + 2)

f (x) = 9 − (x + 2)2

16.2 Vector Notation

Vectors are covered in greater detail in C4, but for now you need to know how to write a displacement of an
object or point in vector notation.

Moving from point A to point B requires a move of 5 units in
 the x direction followed by −4  units in the y direction, 
and is written thus:

where 5 & −4 are the components in the x & y direction.

a

5
A

B

– 4

(1, 6)

(6, 2)
( ) ≡ ( )  =  
∆x

∆y
5

− 4
5 across; 4 down
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16.3 Translations Parallel to the y-axis

Translations are just movements in the x-y plane without any rotation. enlargement or reflections. The movement
can be described as a vector.

The simplest translation to get your head around is the movement in the y-axis. Recall that a straight line, in the
form of , will cross the y-axis at point (0, c). It should be no surprise that if c is varied, the graph
will move (translate) in a vertical direction parallel to the y-axis.

y = mx + c

In general, the function  maps to  by translating  parallel to the y-axis, in the positive direction
by a units.

f (x) f (x) + a f (x)

Map   to  

i.e. map:       to   

The graph is translated in the vertical direction,
parallel to the y-axis, by 3 units.

This is represented by the vector 

y = 9 − (x)2 y = 9 − (x)2 + 3

f (x) f (x) + 3

( )0

3

x

y

0 3-3

3

6

33

y = Ú 9 − (x)2

y = Ú 9 − (x)2  + 3

16.4 Translations Parallel to the x-axis

Translation along the x-axis is not immediately intuitive.

In general, the function  maps to  by translating  parallel to the x-axis, in the positive direction
by a units. 

f (x) f (x − a) f (x)

Note that the value of a is negative. This is explained by the fact that in order for  to have the same
value as  then the value of x must be correspondingly larger in , hence it must be moved in the
positive direction.

f (x − a)
f (x) f (x − a)

Map   to  

i.e. map:       to   

The graph is translated in the horizontal
direction, parallel to the x-axis, by 3 units.

This is represented by the vector 

Note how the  appears inside the squared
bracket. i.e. replace x with 

y = 9 − (x)2 y = 9 − (x − 3)2

f (x) f (x − 3)

( )3

0

−3
(x − 3) x

y

0 3-3

3
3

6

y = Ú 9 − (x)2

y = Ú 9 − (x − 3)2
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16 • C1 •  Graph Transformations

Translating a sine graph 90° to the
left gives a cosine graph.

The vector is 

 maps to 

Hence 

( )−90°

0

y = f (θ) y = f (θ + 90)

cos θ = sin (θ + 90) 90 180 270

-1

1

-90-180

p/2 p 3p/2

90°

y = cos x y = sin x

Translation of an exponential:

1) Map   to  

The graph is translated parallel to the y-axis, in
the positive direction by 1 unit.

This is represented by the vector  and the

graph now passes through the point (0, 2), with
the asymptote now at .

y = 0.5x y = 0.5x + 1

( )0

1

y = 1

5-3 -2 -1 0 1 2 3 4

1

2

3

4

y=0.5x

x

y

y=0.5x + 1

(0, 1)

(0, 2)

2) Map   to  

The graph is translated parallel to the x-axis, in
the positive direction by 2 units, such that it
now passes through the point (2, 1), however
since the exponent is smaller, the graph is
steeper.

y = 0.5x y = 0.5x − 2

5-3 -2 -1 0 1 2 3 4

1

2

3

4

y=0.5x

x

y

y=0.5x−2

(2, 1)(0, 1)
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16.5 One Way Stretches Parallel to the y-axis

Once again, the simplest axis is the y-axis.

In general, the function  maps to  by stretching  parallel to the y-axis, by a scale factor of k.f (x) k f (x) f (x)

Note that parts of the curve that cross the x-axis, do not change position.

Map   to  

i.e. map:       to   

The graph is stretched parallel with the y-axis
with a scale factor of 2.

y = 9 − (x)2 y = 2 9 − (x)2 

f (x) 2 f (x)

x

y

0 3-3

3

6

y = Ú 9 − (x)2

y = 2Ú 9 − (x)2

Map   to  

i.e. map:       to   

The graph is stretched parallel with the y-axis
with a scale factor of 2. 

Note the stretch extends in both the positive and
negative y directions.

y = sin x y = 2 sin x

f (x) 2 f (x)

90 180 270

p/2 p 3p/2

y = 2sin x

y = sin x

360

1

-1

-2

2
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16 • C1 •  Graph Transformations

16.6 One Way Stretches Parallel to the x-axis

In general, the function  maps to  by stretching  parallel to the x-axis, by a scale factor of . f (x) f (kx) f (x)
1

k

Again, not very intuitive. [You can view this as a compression of scale factor a, but keeping to the idea of
stretches is probably simpler].

If , the scale factor will be < 1, if  the scale factor will be > 1.k > 1 k < 1

Map   to  

i.e. map:       to   

The graph is stretched parallel to the x-axis with a scale
factor of ½.

y = 9 − (x)2 y = 9 − (2x)2 

f (x)  f (2x)

x

y

0 3-3

3

y = Ú 9 − (2x)2y = Ú 9 − (x)2

Care must be taken when applying changes to the mapping. The next two examples show how the changes might
not be so obvious.

Map:       to   

i.e. map   to  

As in the example above, the graph is stretched parallel

to the x-axis with a scale factor of ½. 

f (x − 4)  f [2 (x − 4)]

y = 9 − (x − 4)2 y = 9 − (2x − 8)2 

x

y

0 3

3

4 721 5 6

y = Ú 9 − (x − 4)2y = Ú 9 − (2x − 8)2

Note what happens in this case. Suppose we get the transformation wrong and apply the scaling incorrectly:

We map   to  

This is the same as saying:

Map:       to   

As in the example above, the graph is stretched parallel

to the x-axis with a scale factor of ½, but the function

has been translated to the left by 2 units. Hence the

vertex is now centred on .  In effect,  the

translation is done first, and the scaling second.

y = 9 − (x − 4)2 y = 9 − (2x − 4)2 

f (x − 4)  f [2 (x − 4 + 2)]

x = 2

x

y

0 3

3

4 721 5 6

y = Ú 9 − (x − 4)2
2

y = Ú 9 − (2x − 4)2
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Map   to  

i.e. map:       to   

The graph is stretched parallel to the x-axis with
a scale factor of ½. 

y = sin x y = sin 2x

f (x)  f (2x)

90 180 270

-1

1

p/2 p 3p/2

y = sin 2x

y = sin x

360

2p

y

Map   to  

Now  

i.e. map:       to   

The graph is stretched parallel to the x-axis with
a scale factor of 2. 

y =
1

x2
y =

4

x2

y =
4

x2
 ⇒  

1
1
4x2

 ⇒  
1

(1
2x)2  

f (x)  f (0·5x)

-3 -2 -1 1 2 3

10

20

y = x −2

x

y

y = (0.5x)−2
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16 • C1 •  Graph Transformations

16.7 Reflections in both the x-axis & y-axis

In general, the function  maps to   by a reflection of  in the x-axis.f (x) −f (x) f (x)

Map   to  

The graph is reflected in the x-axis.

y = 9 − (x)2 y = − 9 − (x)2 

x

y

0 3-3

3

-3

y = Ú 9 − (x)2

y = −��Ú 9 − (x)2

In general, the function  maps to  by a reflection of  in the y-axis.f (x) f (−x) f (x)

Map   to

  

The graph is reflected in the y-
axis.

y = 9 − (x − 3)2 

y = 9 − (−x − 3)2 

x

y

0 3-3

3

y = Ú 9 − (x − 3)2y = Ú 9 − (−x − 3)2

16.8 Translating Quadratic Functions

In translating any quadratic function, the technique of completing the square can be used to find the translations
required in the x and y axes. The standard form of a completed square is:

y = a (x + k)2 + q

To map  to the completed square of a quadratic, the required vector is y = x2 ( )−k

q

Note the sign of the constant k.

16.9 Translating a Circle Function

The basic equation of a circle, with radius r, centred on the origin is:

x
2 + y

2 = r
2

This can be mapped to a circle, radius r, centred at the point (a, b), by a vector . The equation then becomes:( )a

b

(x − a)2 + (y − b)2 = r
2
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16.10 Transformations Summary

Given Function Map to this Function Transformation required (note the phraseology):

y = f (x) y = f (x) + a Translate parallel to the y-axis, by a units, in the positive direction ( )0

a

y = f (x − a) Translate parallel to the x-axis, by a units, in the positive direction ( )a

0

y = k f (x) Vertical one way stretch, parallel to the y-axis, by a scale factor k

y = f (kx) Horizontal one way stretch, parallel to the x-axis, by a scale factor 
1

k

y = f  (x

k ) Horizontal one way stretch, parallel to the x-axis, by a scale factor k

y = −f (x) A reflection of  in the x-axis.f (x)

y = f (−x) A reflection of  in the y-axis.f (x)

y = −f (−x) A rotation of 180°

16.11 Recommended Order of Transformations

Very often the order of applying multiple transformations does not make any difference, but occasionally it can.
There are two ways of going about choosing the order. The first is by the checklist below or the other is to look
at the order of calculation in the function.

In general, the transformations of  to  and   both operate outside the function
, and can be done at anytime. 

y = f (x) y = k f (x) y = f (x) + a
f (x)

The problems start when transformations mess with the function  such as  or . It is
important to recognise that in shifting from  to, say,  you are replacing  in the original
function by . Similarly for ,  is replaced by  or even .

f (x) y = f (kx) y = f (x − a)
f (x) y = f (x − a) (x)

(x − a) y = f (kx) (x) (kx) (−kx)

A good general order to apply the transformations are:

j Apply any horizontal translations parallel to the x-axis

j Apply any stretching

j Carry out any reflections

j Apply any vertical translations parallel to the y-axis

Looking at the order of calculation should give you a good idea of the order required. Start by looking at the
function  first by replacing the x part and then work outwards. (A bit like doing function of function sums
really).

f (x)

E.g. 1 Transform the graph of  to y = x3 y = 3 (x + 2)3 − 5

Starting on the inside, .x3 ⇒ (x + 2)3 ⇒ 3 (x + 2)3 ⇒ 3 (x + 2)3 − 5

So the sequence is a horizontal translation of −2, a vertical stretch of scale factor 3, and a

vertical translation of −2. A total vector move of .( )−2

−5

E.g. 2 Transform the graph of  to y = x y = 2 (3 − x)
Starting on the inside, x ⇒ (x + 3) ⇒ (−x + 3) ⇒ 2 (3 − x)
So the sequence is a horizontal translations of −3, a reflection in the y-axis, and a vertical
stretch of scale factor 2.
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16 • C1 •  Graph Transformations

16.12 Example Transformations

16.12.1  Example:

1 Map    to   y = x2 y = x2 − 5x + 6

Solution:
Complete the square:

y = x
2 − 5x + 6 = (x −

5

2)
2

− (5

2)
2

+ 6

y = (x −
5

2)
2

−
25

4
+ 6 = (x −

5

2)
2

−
25

4
+

24

4

y = (x −
5

2)
2

−
1

4

 ( )Translation required is:
5 / 2

−1 / 4

2 The function  is shown, with turning points as marked.y = f (x)
Sketch the curves for  and , marking the coordinates of the turning points.y = 2 f (x) y = −f (x)

O x

y

y = f(x)

(3, −1)

(−2, 2)

Solution:

O x

y

y =2 f(x)

(3, −2)

(−2, 4)

O x

y

y =− f(x)

(3, 1)

(−2, −2)

3 Describe the mapping of    to   y = 3 x y = 9 x

Solution:
This is a vertical one way stretch, parallel to the y-axis, by a scale factor  or 3.9 / 3
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4 Describe the mapping of    to   y = x3 y = 10 − x3

Solution:
x3 ⇒ −x3 ⇒ 10 − x3

This is a reflection in the y-axis, followed by a translation parallel to the y-axis of 10 units or vector

( )0

10

5 The function  is shown, with a turning point as marked.y = f (x)
Sketch the curve for , marking the coordinate of the turning point.y = 2 f (x − 6)

O x

y

y = f(x)

(6, −2)

Solution:
This has to be tackled in two stages. Do the translation first then the stretch. Note how the points of
intersection with the x-axis remain unchanged after the stretch.

O x

y

y = f(x + 6)

(0, −2)

O x

y

(0, −4)

y = 2f(x + 6)

Stage 1: Translation Stage 2: Stretching

16.13 Topical Tips

In the exam you need to tick off the following points:

j Type of transformation: Translation, stretch, or reflection?

j The direction of transformation: Translation parallel to x or y axis, or reflected in which axis? 

j Magnitude of transformation: number of units moved or scale factor? 

j A vector quantity can be used to describe the translation.

j Use the correct terminology, e.g. Translation instead of ‘move’ or ‘shift’. ‘Reflection’ - not ‘mirror’

[Note: although this is in the C1 section, this chapter also includes topics more suited to C3. You will need to
refer back to this section then.]

136 ALevelNotesv8Erm 07-Apr-2013



17 • C1 • Circle Geometry

17.1 Equation of a Circle

17.1.1 Centre (0, 0)

A circle, centre (0, 0), radius r.

From Pythagoras’ theorem:

Therefore, a circle, centre (0, 0), radius r has an
equation of 

x2 + y2 = r2

x2 + y2 = r2
x 

y 

o

r
y

x

P (x, y)

x
2 + y

2 = r
2

17.1.2 Centre (a, b)

If you translate the circle, , by 

the centre of the circle becomes (a, b), with radius r.

From Pythagoras’ theorem:

x2 + y2 = r2 ( )a

b

(x − a)2 + (y − b)2 = r2

x 

y 

o

r

Q (x, y)

y−b

x−a(a, b)
C

Expand the brackets & simplify to give:

   x
2 − 2ax + a

2 + y
2 − 2by + b

2 = r
2

   x
2 + y

2 − 2ax − 2by + a
2 + b

2
− r

2 = 0

   x
2 + y

2 − 2ax − 2by + c = 0

    c = a
2 + b

2
− r

2where 

(x − a)2 + (y − b)2 = r2

x
2 + y

2 − 2ax − 2by + c = 0

Note that:

j the coefficients of  and  are equal to 1, all other terms are linearx2 y2

j There is no xy term

j The coefficients of co-ordinate of the centrex = −2 × x 

j The coefficients of co-ordinate of the centrey = −2 × y 
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17.2 Equation of a Circle Examples

17.2.1  Example:

1 Find the centre and radius of the circle x2 + (y + 3)2 = 25

Solution:
Compare with the general equation of a circle:

(x − a)2 + (y − b)2 = r
2

(x − 0)2 + (y − (−3))2 = 5
2

 and ∴ a = 0,  b = −3 r = 5

          Centre is (0, −3), radius is 5

2 A circle with centre (1, −2), which passes through point

(4, 2)

Find the radius of the circle

Find the equation of the circle x 

y 

o

r

P(4, 2)

C(1, −2)

Solution:
Use pythag and the points given to find radius:

   r
2 = (4 − 1)2 + (2 − (−2))2

      = 25

 ∴      r = 5

Using the standard form: the equation of this circle is:

   (x − 1)2 + (y + 2)2 = 25

3 Show that the equation  represents a circle. Give the co-ordinates of
the centre and radius of the circle.

x2 + y2 + 4x − 6y − 3 = 0

Solution:
Compare with the standard form of x2 + y2 − 2ax − 2by + c = 0

   − 2a = 4 ⇒  a = −2

   − 2b = −6 ⇒  b = 3

∴   = (−2,  3)Centre of circle

   r = a2 + b2 − c

     = (−2)2 + 32 − (−3)

     = 16 = 4

Note:
An alternative and simpler method is to complete the square to put the equation into the standard
form of  (See later).(x − a)2 + (y − b)2 = r2
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17.3 Properties of a Circle

A reminder: the first three properties shown are of interest in the core modules.

The angle in a semicircle is
a right angle

A radius and a tangent to a
point form a right angle

A perpendicular line to the
chord which passes through

the center, 'bisects' the
chord

Alternate Segment Theorem
Chord meets tangent, angle

between them = angle in
alternate segment

Opposite angles in a cyclic
quadrilateral = 180°

a + b = 180

x + y = 180

Angle at the centre = 2 × angle at the circumference
(2 triangles with common chord as a base)

Angles in the same segment are equal.
(Triangles with a common chord as a

base)

Tangents that meet at an external
point (P) are equal in length

a

b

c

d
18

0°180°

a

b

x

y

o o o

2y

y

o

Q

R

S

T

UQ

R

S

T

U

P

B

o

A

Intersecting chords
RQ × QS = UQ × QT

Line of symmetry
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17.4 Intersection of a Line and a Circle

There are three scenarios that can describe the intersection of a straight line and a circle:

x 

y 

o

(a, b)
C

x 

y 

o

Q (x, y)

(a, b)
C

x 

y 

o

(a, b)

M

NC

1 (repeated) solution 2 distinct solutions No solutions

(tangent) (chord)

j A straight line may just touch the circle at one point, in which case it becomes a tangent to the circle

j A line can cut the circle in two places and part of the line will form a chord

j Option 3 is for the line to make no contact and miss the circle altogether, (see line MN in the diagram).

There are two methods of solving these problems: 

a) by using simultaneous equations. If the resulting quadratic equation has repeated roots, there is
only one solution and the line is tangent to the circle. If there are two roots, then the line cuts the
circle in two places. If there are no solutions, then there is no interception of the circle by the line.

b) by comparing the perpendicular distance from the line to the centre of the circle and comparing the
result with the radius.

17.4.1  Example:

1 Show that the line  is a tangent to the circle .2y = 5 − x x2 + y2 = 5

Solution:
If the line is a tangent, there should be only one solution from the simultaneous equations of:

       x = 5 − 2y      (1)

   x
2 + y

2 = 5         (2)

   (5 − 2y)2 + y
2 = 5         Substitute (1) into (2)

   4y
2 − 20y + 25 + y

2 − 5 = 0   expand

   5y
2 − 20y + 20 = 0        simplify

   y
2 − 4y + 4 = 0        (3)

 b2
− 4ac = 0  b

2 = 4acIf there is only one solution, then and hence

   (−4)2 = 4 × 1 × 4

       16 = 16 LHS RHS

Alternatively, find the roots of equation (3)  

   y
2 − 4y + 4 = 0

   (y − 2) (y − 2) = 0

   y = 2 (coincident roots i.e. only 1 solution)

Hence, the line is a tangent to the circle.
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2 A line, , is tangent to the circle . y = kx x2 + y2 + 10x − 20y + 25 = 0

Show that the x-coordinates of the intersection points are given by:

, and find the x-coordinates of the tangents to the circle.(1 + k2) x2 + (10 − 20k) x + 25 = 0

Solution:

   x
2 + y

2 + 10x − 20y + 25 = 0    given

   x
2 + (kx)2 + 10x − 20 (kx) + 25 = 0       substitute

   x
2 + k

2
x

2 + 10x − 20kx + 25 = 0     simplify

 ∴ (1 + k
2) x

2 + (10 − 20k) x + 25 = 0    QED

= 0The tangents to the circle are given when the discriminant 

   b
2

− 4ac = 0

   (10 − 20k)2
− 4 (1 + k

2) × 25 = 0

   (100 − 400k + 400k
2) − 100 − 100k

2 = 0

   300k
2

− 400k = 0

 ∴   k (300k − 400) = 0

 k = 0 or k =
400

300
=

4

3

Note: the line  passes through the origin, so we are looking for the two tangents that pass
through the origin.

y = kx

The x-coordinates of the tangents to the circle are found by substituting the values of k just found
into the given equation:

  (1 + k
2) x

2 + (10 − 20k) x + 25 = 0

k = 0  ⇒  x
2 + 10x + 25 = 0

         (x + 5) (x + 5) = 0

      ∴ x = −5

k =
4

3
  ⇒  (1 +

16

9 ) x
2 + (10 − 20 ×

4

3) x + 25 = 0

           
25

9
x

2 −
50

3
x + 25 = 0

           25x
2 −

50 × 9

3
x + 25 × 9 = 0

           x2 − 6x + 9 = 0

         (x − 3) (x − 3) = 0

      ∴ x = 3

The x-coordinates of the tangents to the circle are  and .x = −5 x = 3
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17.5 Completing the Square to find the Centre of the Circle

Completing the square puts the equation into the standard form of   from which you
can read off the co-ordinates of the centre of the circle and its radius.

(x − a)2 + (y − b)2 = r2

17.5.1  Example:

1 Find the radius and the centre of the circle for the equation x2 + y2 − 6x − 8y + 9 = 0

Solution:
Complete the square for both the x and y terms.

   x
2 − 6x + y

2 − 8y + 9 = 0

   (x − 3)2
− 3

2 + (y − 4)2
− 4

2 + 9 = 0

   (x − 3)2 + (y − 4)2
− 9 − 16 + 9 = 0

   (x − 3)2 + (y − 4)2 = 16

(3,  4) ,  = 4Centre of circle is radius 

2 Find the radius and the centre of the circle for the equation 3x2 + 3y2 + 12x − 24y + 12 = 0

Solution:
Divide through by 3 to ensure the coefficients of the squared terms are 1, then complete the square
for both the x and y terms.

   3x
2 + 3y

2 + 12x − 24y + 12 = 0

   x
2 + y

2 + 4x − 8y + 4 = 0

   x
2 + 4x + y

2 − 8y + 4 = 0

   (x + 2)2
− 2

2 + (y − 4)2
− 4

2 + 4 = 0

   (x + 2)2 + (y − 4)2
− 4 − 16 + 4 = 0

   (x + 2)2 + (y − 4)2 = 16

(−2,  4) ,  = 4Centre of circle is radius 

3 Find the centre of the circle and value of k for the equation  when the
radius is 5.

x2 + y2 − 6x − k = 0

Solution:
Complete the square for both the x and y terms.

   x
2 − 6x + y

2 − k = 0

   (x − 3)2
− 3

2 + (y − 0)2
− k = 0

   (x − 3)2 − 9 + y
2 − k = 0

   (x − 3)2 + y
2 = 9 + k

     r2 = 9 + k = 5
2

But radius:

            k = 25 − 9 = 16

(3,  0) ,  k = 16Centre of circle is  
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17.6 Tangent to a Circle

To find a tangent to circle, we use the property that a tangent to a circle is at right angles to the radius at that
point. (This is because we have not learnt how to differentiate an equation with the same form as the equation of
a circle).

17.6.1  Example:

1 Show that the point P (5, 5) lies on the circle 

and find the equation of the tangent at P.

x2 + y2 − 6x − 4y = 0

x 

y 

o

P(5, 5)

(3, 2)5

5

Solution:
Substituting (5, 5) into the given equation:

LHS  RHS= 25 + 25 − 30 − 20 = 0 =

∴ P (5, 5) does lie on the circle

To find gradient of the tangent, first find the gradient of a line from P to the centre. Therefore, find
the co-ordinates of the centre.

Match the given equation with the standard form:

   x
2 + y

2 − 2ax − 2by + c = 0

   x
2 + y

2 − 6x − 4y = 0

∴ − 2a = −6 ⇒  a = 3

∴ − 2b = −4 ⇒  b = 2

(3,  2)Centre = 

Gradient of the radius through P is

     
5 − 2

5 − 3
=

3

2

= −
2

3
Gradient of the tangent 

y − y1 = m (x − x1)Formula for a straight line is 

 y − 5 = −
2

3
(x − 5)Equation of the tangent is

    ⇒  3y − 15 = −2x + 10

    ⇒  3y + 2x − 15 = 0
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2 A line is drawn from point B (8, 2) to be a
tangent to the circle

.

Find the length of the tangent.

Sketch a diagram!

x2 + y2 − 4x − 8y − 5 = 0

B(8, 2)

C(2, 4)

A

Solution:
Match the given equation with the standard form:

   x
2 + y

2 − 2ax − 2by + c = 0

   x
2 + y

2 − 4x − 8y − 5 = 0

∴ − 2a = −4 ⇒  a = 2

∴ − 2b = −8 ⇒  b = 4

= (2,  4)Centre

   r = a2 + b2 − c

   r = (2)2 + 42 − (−5)

   r = 25

   r = 5

Using pythag:

   BC
2 = AC

2 + AB
2       (1)

    BC
2 = (2 − 8)2 + (4 − 2)2 = 36 + 4 = 40but

  40 = r
2 + AB

2Sub in (1)

∴     AB
2 = 40 − r

2 = 40 − 25 = 15

   AB = 15

= 15Length of tangent 
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17.7 Tangent to a Circle from Exterior Point

From any external point outside a circle, you
can draw two tangents, and the lengths of both
these tangents will be equal. 

i.e. AP = BP

P

C

A

B

17.7.1  Example:

1
A circle  has a line
drawn from its centre to a point P (4, 8).

What is the length of the line CP and the length
of the tangent from P to the circle?

Sketch the circle.

(x + 2)2 + (y − 3)2 = 36

x 

y 

o

P(4, 8)

C (−2, 3)

5

A

B (4, 3)

Solution:
The length of the line CP can be found from Pythagoras.

From the co-ordinates of the points C & P, the differences in x and y positions are used thus:

    CP
2 = (xp − xc)

2 + (yp − yc)
2

    = (4 − (−2))2 + (8 − 3)2

    = 6
2 + 5

2

  ∴ CP = 61

A tangent can be drawn from P to A and P to B.

From the equation the radius is 6, (CB) and the since P is vertically above B, we can see that the
length of the line BP is 5.

The length of the both tangents is therefore 5.
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2 A circle  has a line
drawn from its centre to a point P (5, 8).

What is the length of the tangent from P to the
circle?

Sketch the circle.

(x + 1)2 + (y − 4)2 = 9

x 

y 

o

P(5, 8)

C (−1, 4)

5

A

B

Solution:
The length of the line CP can be found from Pythagoras.

From the co-ordinates of the points C & P, the differences in x and y positions are used thus:

    CP
2 = (xp − xc)

2 + (yp − yc)
2

    = (5 − (−1))2 + (8 − 4)2

    = 6
2 + 4

2 = 52

  ∴      CP = 52

From the equation the radius is 3, (CB)

     CP
2 = CB

2 + BP
2

  ∴      BP
2 = CP

2 − CB
2

    = 52 − 3
2

    = 43

      BP = 43
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17.8 Points On or Off a Circle

The general principle of proving that a given point lies on the circle is to show that the equation of the circle is
satisfied when the co-ordinates of the point are substituted into the equation, and compare the LHS and RHS side
of the equation.

To see if a given point lies inside or outside the circle, you need to compare the radius of the circle to the
distance from the point to the centre of the circle. This can be done, either directly with pythag, using the co-
ordinates of the point and the centre, or by substitution into the equation of the circle.

Having the equation in the form of  is ideal, and means that after substituting the point
co-ordinates into the LHS, a direct comparison can be made to the radius squared on the RHS.

(x − a)2 + (y − b)2 = r2

If the equation is of the form  then if the LHS equals zero, then the point is on
the circle, if less than 1, inside the circle, or if greater than 1, outside the circle.

x2 + y2 − 2ax − 2by + c = 0

17.8.1  Example:

1 A circle has the equation . Show that point P (1, 2) lies on the circle and
calculate whether point Q (−1, 2) is inside or outside the circle.

(x + 3)2 + (y − 5)2 = 52

Solution:
 For point P (1, 2), evaluate the LHS and compare with RHS:

      (x + 3)2 + (y − 5)2 = 25Given

   (1 + 3)2 + (2 − 5)2

           (4)2 + (−3)2

                            16 + 9

       25 = 25 LHS RHS

∴  point P lies on the circle.

Point Q (−1, 2)

         (x + 3)2 + (y − 5)2 = 25Given

   (−1 + 3)2 + (2 − 5)2

      (2)2 + (−3)2

           4 + 9

         13 < 25 LHS RHS

∴  point Q lies inside the circle.
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2 A circle has the equation . Establish if the line  meets the circle
in any way or lies outside the circle.

(x − 5)2 + (y + 2)2 = 52 y = 2x

Solution:
If the line and the circle meet there should be a solution if  is substituted into the equation
of the circle:

y = 2x

      (x − 5)2 + (y + 2)2 = 25Given

            y = 2xand

   (x − 5)2 + (2x + 2)2 = 25

   x
2 − 10x + 25 + 4x

2 + 8x + 4 = 25

   5x
2 − 2x + 4 = 0

To test for a solution, find the discriminant:

   D = b
2

− 4ac

      = 4 − 4 × 5 × 4

      = −76

Hence, there is no solution, as the discriminant is negative.

3 Find the coordinates of the points where the circle  crosses the x-axis.(x − 5)2 + (y − 3)2 = 90

Solution:
If the line and the circle meet there should be a solution when  is substituted into the
equation of the circle:

y = 0

      (x − 5)2 + (y − 3)2 = 90Given

            y = 0and

   (x − 5)2 + (0 − 3)2 = 90

   (x − 5)2 + 9 = 90

   (x − 5)2 = 81

   (x − 5) = ± 81

   x = 5 ± 81

   x = 5 ± 9

  x =  − 4  x = 14and
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17.9 Worked Examples

17.9.1  Example:

1 A circle has centre, C (7, 13), radius 13, with the equation:

(x − 7)2 + (y − 13)2 = 13
2

A point P, lies on the circle at (2,1). Another point Q also lies on the circle and the length of the
chord PQ is 10. What is the shortest distance from the centre C, to the chord PQ. 

Prove point M (4, 10) is inside the circle.

Solution:
The point Q can take one of two positions, both
will give the correct solution.

The shortest distance from C to the chord PQ is
when the line CS is at a right angle to the chord
and bisects the chord.

Using pythag on the triangle CSQ we have:
x 

y 

o P(2, 1)

C (7, 13)
5

Q

Q

S

    CS
2 + 5

2 = 13
2

    CS
2 = 13

2
− 5

2 = 144

    CS = 144

∴ = 12Shortest distance from C to PQ

If point M is inside the circle, then the distance CM must be less that the original radius.

 CM
2 = 3

2 + 3
2 = 54Using pythag:

      CM = 7·348

2
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17.10 Circle Digest

Equations of a Circle Centre Radius

x2 + y2 = r2 (0,  0) r

(x − a)2 + (y − b)2 = r2 (a,  b) r

(x − x1)2 + (y − y1)2 = r2 (x1,  y1) r

x2 + y2 − 2ax − 2by + c = 0

c = a2 + b2 − r2where 

(a,  b) r = a2 + b2 − c

Other useful equations:

     y = mx + c

     y − y1 = m (x − x1)

     m =
y2 − y1

x2 − x1

=
rise

run

     m1 m2 = −1

     
y − y1

y2 − y1

=
x − x1

x2 − x1

  = (x2 − x1)2 + (y2 − y1)2Length of line between 2 points

  = (x1 + x2

2
,

y1 + y2

2 )Co-ordinate of the Mid point 
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18.1 Calculus Intro

Anyone going on to study maths, science or engineering as a career will need to be adept at using calculus. It’s
almost as if everything you have ever done in maths so far, has been a preparation for learning about this new
subject.

If you find it difficult to grasp at first, don’t despair. It took two brilliant minds, in the form of Isaac Newton and
Gottfried Leibniz, to discover the techniques and a further 100 years before it finally became of age, in the form
that we now know it.

Calculus is divided, like Gaul, into two parts, differential calculus and integral calculus. Differential calculus and
integral calculus are inverse operations so it is relatively easy to move from one to the other.

18.2 Historical Background

The two men attributed with the discovery of calculus are Isaac Newton (1642-1727) and Gottfried Leibniz
(1646-1716), who developed their ideas independently of each other. Both these mathematicians looked at the
problem in different ways, and indeed, their old methods have been reformulated into the more rigorous
approach then we know today.

Newton started work during the Great Plague of 1664 and developed his differential calculus as the “method of
fluxions” and integral calculus as the “inverse method of fluxions”. It was many years later that he published his
methods, by which time Leibniz was becoming well known from his own publications. Hence the controversy of
who developed calculus first.

Leibniz was very careful about choosing his terminology and symbols, and it it mainly his notation that is used

today. It is Leibniz that gave us  and the integral sign  which is a script form of the letter S, from the
initial letter of the Latin word summa (sum).

dy / dx ∫

18.3 What’s it all about then?

In the next section we will learn the techniques required, but it is important to understand what calculus can do
for us.

First, differential calculus. 

In simple terms, differentiating a function will give us another function, called the gradient function, from which
we can calculate the gradient of the curve at any given point. This gradient is defined as the gradient of the
tangent to the curve at that point.

If you know the gradient you have a measure of how y is changing with respect to x. i.e. the rate of change. 

For example if y is distance and x is time, the gradient gives  which is velocity.
distance

time

Second, integral calculus. 

As stated above, differential calculus and integral calculus are inverse operations. If you know the differential, or
gradient function, you can get back to the original function by using integration, and visa versa. (Some simple
caveats apply, but see later).

If you integrate a function you find you are actually measuring the area under the curve of the gradient function.
However, it is not very intuitive to see how these two branches of calculus are connected. Perhaps the way to
look at it is this: to integrate a gradient function in order to get back to the original function, you need a add up
all the gradients defined by the gradient function. To do that, take a bacon slicer and slice the gradient function
up into incredible small slices and sum the slices together. In doing so, you end up with the area under the curve.
Remember, when integrating a function, you need to think of that function as a gradient function.
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differentiation ⇒ gradient of a curve

     integration ⇒ area under a curve

18.4 A Note on OCR/AQA Syllabus Differences

In C1 & C2 only functions of the form  are considered.y = ax
n

OCR splits calculus with rational functions into two parts: differentiation in C1 & integration in C2.

AQA takes a different approach. C1 contains differentiation & integration, but only for positive integers of n,
whilst C2 then considers differentiation & integration for all rational values of n.
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OCR C1 / AQA C1 / C2

Differentiation is a major branch of maths that explores the way in which functions change with respect to a
given variable. In particular, it is concerned with the rate at which a function changes at any given point. In
practise this means measuring the gradient of the curve at that given point and this has been defined as the
gradient of the tangent at that point.

To find this gradient we derive a special Gradient function that will give the gradient at any point on the curve.
This is called differentiation.

Differentiation also allows us to find any local maximum or minimum values in a function, which has many
practical uses in engineering etc.

19.1 Average Gradient of a Function

P

Q

Rq

x
x1 x2

x2 – x1

y(x2) – y(x1)

y (x)

y (x1)

y (x2)
Chor

d

Average Gradient of a function

The average gradient of a curve or function between two points is given by the gradient of the chord connecting
the points. As illustrated, the chord PQ represents the average gradient for the interval .x1  x2to

=
rise

run
=

QR

PR
=

y (x2) − y (x1)
x2 − x1

Gradient 

 tan θ =
QR

PR
Note that: 

The gradient represents the rate of change of the function. 

We can see this by looking at the units of the gradient. If the y-axis represents, say, distance and the x-axis
represents time, then the units of the gradient would be .distance / time =  speed

So far so good, but we really need the rate of change at a given point, say P. The average gradient is only an
approximation to the actual gradient at P, but this can be improved if we move point Q closer to point P. As Q
get closer to P, the straight line of the chord becomes the tangent to the curve at P. See illustration below.
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P

x

Q2

y (x)

Q1

Tangent at P

Cho
rd

Gradient of a function at P

19.2 Limits

The concept of limits is absolutely fundamental to calculus and many other branches of maths. The idea is
simple enough: we ask what happens to a function when a variable approaches a particular value.

If the variable is x and it approaches, (or tends towards), the value k, we write .  Beware, this is not the
same as saying that , as the function might not be defined at k. We have to sneak up on the solution:-)

x → k
x = k

As  , we can find the value that our function approaches, and this is called the limit of the function.x → k

This is expressed with the following notation:

x → k

f (x) = Llim

This is read as “the limit of f of x, as x approaches k, is L”. This does not mean that , only that the limit
of the function is equal to L.

f (k) = L

From the graph above, we can see that as the interval between P & Q gets smaller, then the gradient of the chord
tends toward the gradient of the tangent. The gradient of the tangent is the limit.

19.2.1  Example:

Find the limit of the function  as x approaches 1.f (x) =
x2 − 1

x − 1

Solution:
Note that  is not defined, (the denominator would be 0 in this case).f (1)

f (0·9) f (0·99) f (0·999) f (1·0) f (1·001) f (1·01) f (1·1)
1·900 1·990 1·999 undef ined 2·001 2·010 2·100

∴ 
x → 1

  
x2 − 1

x − 1
= 2lim

 
x → 1

  
x2 − 1

x − 1
=

x → 1

  
(x − 1) (x + 1)

x − 1
=

x → 1

(x + 1) = 2or lim lim lim
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19.3 Differentiation from First Principles

P

xx

f (x)

f (x)

f (x + dx)

dy = f (x + dx) – f(x)

x + dx

dx

Differentiation from First Principles

Starting with the average rate of change as before, using an interval from , where  is a very small
increment. The value of our function  will range from .

x x + δxto δx
f (x) f (x)   f (x + δx)to

    =
rise

run
=

change in y
change in x

=
δy

δx
Gradient 

       =
δy

δx
=

f (x + δx) − f (x)
(x + δx) − x

=
f (x + δx) − f (x)

δx

Now let . In other words, let the interval shrink to a point, at P:δx → 0

    =
δx → 0

  
f (x + δx) − f (x)

δx
Gradient lim

      =
δx → 0

  
δy

δx
lim

This limit function is denoted by the symbols:

dy

dx
  ƒ′ (x)or 

   
dy

dx
= ƒ′ (x) =

δx → 0

  
f (x + δx) − f (x)

δx
Thus: lim

This is called the gradient function, the first derivative or differential of y with respect to (w.r.t) x.

19.3.1  Example:

An example of differentiating from first principles:

 f (x) = 2x
2 + 3x + 4If 

 f (x + δx) = 2 (x + δx)2 + 3 (x + δx) + 4then

∴ δy = f (x + δx) − f (x)

  = 2 (x + δx)2 + 3 (x + δx) + 4 − (2x
2 + 3x + 4)

  = (4x + 3) δx + 2 (δx
2)

∴ 
δy

δx
=

(4x + 3) δx + 2 (δx2)
δx

= 4x + 3 + 2 (δx)

As   then:δx → 0

   
dy

dx
=

δx → 0

  
δy

δx
= 4x + 3lim

Hence  is the limiting value as  approaches zero, and is called the differential of .4x + 3 δx f (x)
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19.4 Deriving the Gradient Function

Traditionally, the symbols  have been used to denote the very small increments in x & y. The increments,
, should not be confused with .

δx & δy
δx & δy dx & dy

The gradient for any function can be found using the above example, but differentiation from first principles is
rather long winded. A more practical method is derived next. and we use h instead of .δx

P

x
x

(x)n

(x + h)n

(x + h)n – (x)n

x + h

h

Q
y = xn

y

O

Deriving the Gradient Function

   PQ =
change in y
change in x

=
(x + h)n − xn

h
 Gradient of 

(x + h)n
Use the binomial theorem to expand 

       =
(xn + nxn − 1h + n(n − 1)

2 xn − 2h2 +… + hn) − xn

h

       =
nxn − 1h + n(n − 1)

2 xn − 2h2 +… + hn

h

       = nx
n − 1 +

n (n − 1)
2

x
n − 2

h +… + hn − 1

Now let . In other words, let the interval h shrink to a point, at P and chord PQ tends to the tangent at P:h → 0

   P =
dy

dx
=

h → 0

  nx
n − 1 +

n (n − 1)
2

x
n − 2

h +… + hn − 1Gradient at  lim

            = nx
n − 1 + 0 +… + 0

  ∴        
dy

dx
= nx

n − 1

Hence, the general term for the gradient function of , which applies for all real numbers of n.xn is  nxn − 1

y = x
n ⇒  

dy

dx
= nx

n − 1
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19.5 Derivative of a Constant

We can use the normal rules derived in the last section for finding the derivative of a constant, C.

For :y = C

    y = C

      = Cx
0

  ∴  
dy

dx
= C × 0 × x

−1

      = 0

This makes sense as  represents a horizontal straight line, which has a gradient of zero. In addition adding
a constant to a function only changes its position vertically and does not change the gradient at any point.

y = c

19.6 Notation for the Gradient Function

If the equation is given in the form  then the gradient function is written .y = ax…
dy

dx

Similarly, for an equation such as  the gradient function is written as .s = t2 − 4t
ds

dt

For an equation in the form  then the gradient function is written .f (x) =… f ′ (x)

It should be understood that  is not a fraction, but is rather an operator  on y. Perhaps  is a

better way to write the gradient function.

dy

dx

d

dx

d (y)
dx

 or 
d

dx
(y)

Later on, in C3, we will see that :

   
dy

dx
=

1
dx
dy

19.7 Differentiating Multiple Terms

Using function notation; the following is true:

y = f (x) ± g (x)   
dy

dx
= f ′ (x) ± g′ (x)If then

In other words, we differentiate each term individually. When differentiating, you will need to put the function in
the right form.

j Differentiating a f (x) ⇒ a f ′ (x)

j Terms have to be written as a power function before differentiating, e.g. x = x
1
2

j Brackets must be removed to provide separate terms before differentiating, 
e.g. (x − 4) (x − 1) ⇒ x2 − 5x + 4

j An algebraic division must be put into the form 

e.g. 

axn + bxn − 1… c

y =
x4 + 7

x2
= x

2 + 7x
−2

j Differentiating a constant term results in a zero

j Recall x0 = 1
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19.8 Differentiation: Worked Examples

19.8.1  Example:

1 Differentiate the equation  and find the gradient at the point (1, 3).y = x6 − 2x4 + 3x2 − 4x + 5

y = x
6 − 2x

4 + 3x
2 − 4x + 5

dy

dx
= 6x

5 − 8x
3 + 6x − 4

x = 1 
dy

dx
= 6 − 8 + 6 − 4 = 0When 

2 Differentiate the equation  and find the gradient at the point (1, 2).y = 2x4 x

y = 2x
4

x = 2x
4
x

0.5 = 2x
4.5

dy

dx
= 9x

3.5

x = 1 
dy

dx
= 9When 

3
Differentiate the equation y =

2
3

x

y =
2

3
x

= 2x
−1

3

dy

dx
= −

2

3
x

−4
3 = −

2

3x
4
3

= −
2

3 (x1
3)4 −

2

3 ( 3
x)4
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19.9 Rates of Change

Differentiation is all about rates of change. In other words, how much does y change with respect to x. Thinking
back to the definition of a straight line, the gradient of a line is given by the change in y co-ordinates divided by
the change in x co-ordinates. So it should come as no surprise that differentiation also gives the gradient of a
curve at any given point.

Perhaps the most obvious example of rates of change is that of changing distance with time which we call speed.
This can be taken further, and if the rate of change of speed with respect to time is measured we get acceleration.

In terms of differentiation this can be written as:

   
ds

dt
= v where s = distance, t = time & v = velocity

   
dv

dt
= a where s = distance, t = time & a = acceleration

   
dv

dt
=

d

dt
(v) =

d

dt
·
ds

dt
=

d2s

dt2

The gradient at A is the rate at which
distance is changing w.r.t time. i.e. speed.
A +ve slope means speed is increasing
and a −ve slope means it is decreasing.

s

t

A

B

Time

Dist

+ve slope, speed increasing

−ve slope, speed decreasing

19.9.1  Example:

1 An inert body is fired from a catapult, at time , and moves such that the height above sea
level, y m, at t secs, is given by:

t = 0

y =
1

5
t
5 − 16t

2 + 56t + 3

a)  Find  and the rate of change of height w.r.t time when 
dy

dt 
t = 1

b)  When , determine if the height is increasing or decreasing.t = 2

Solution:

    
dy

dt
= t

4 − 32t + 56

t = 1  
dy

dt
= 1 − 32 + 56 = 25 m / secWhen 

t = 2  
dy

dt
= 2

4
− 64 + 56 = 8 m / secWhen 

Since the differential is positive the height must be increasing.
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19.10 Second Order Differentials

So far we have differentiated the function  and found the first derivative  or .y = f (x)
dy

dx
f ′ (x)

If we differentiate this first derivative, we obtain the second derivative written as   or . 
d2y

dx2
f ′′ (x)

We can then use this second derivative to classify parts of the curve, (see later). Do not confuse the notation as a
squared term. It simply means the function has been differentiated twice. This is the conventional way of writing
the 2nd, 3rd, or more orders of differential.

19.10.1  Example:

1 Find the second derivative of y = 2x4 − 3x2 + 4x − 5

dy

dx
= 8x

3 − 6x + 4

d2y

dx2
= 24x

2 − 6

2 Find the second derivative of y = 4 x

y = 4 x = 4x
1
2

dy

dx
= 2x

−1
2

d2y

dx2
= −x

−3
2

3 Find the second derivative of y = 3x5 − x + 15

y = 3x
5 − x

1
2 + 15

dy

dx
= 15x

4 −
1

2
x

−1
2

d2y

dx2
= 60x

3 +
1

4
x

−3
2
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19.11 Increasing & Decreasing Functions

When moving left to right on the x-axis, if the gradient of the curve is positive then the function is said to be an
increasing function, and if the gradient is negative then the function is said to be a decreasing function.

Increasing Function

As x increases y increases and  is positive 

 for range of  

dy

dx

Tan θ > 0 0 < θ <
π
2

 Tan θ =
dy

dx
Note:  

Increasing functiony

x
q

o

dy
 /dx > 0

Decreasing Function

As x increases y decreases and  is negative 

 for range of  

dy

dx

Tan θ < 0
π
2

< θ < π

Decreasing functiony

xo
q

dy
 /dx < 0

In this following example, the function has increasing and decreasing parts to the curve and the values of x must
be stated when describing these parts. Note that at the change over from an increasing to a decreasing function
and visa versa, the gradient is momentarily zero. These points are called stationary points − more later.

x

y

Increasing

Decreasing

Increasing
(+ve gradient)

(−ve gradient)

(+ve gradient)

Increasing and Decreasing Function

To find the values of x for which the function is either increasing and decreasing, differentiate the function and
set the gradient function to > 0, or < 0 accordingly. Then solve the inequality. It is instructive to see the both the
function and gradient function plotted on the same graph, as in the first example below.
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19.11.1  Example:

1 For what values of x does  become an increasing function?x3 − 3x2 + 4

Solution:

    y = x
3 − 3x

2 + 4

        
dy

dx
= 3x

2 − 6x

y 
dy

dx
> 0   ∴ 3x

2 − 6x > 0For increasing 

         x (3x − 6) > 0

∴            x < 0 or x > 2

Note how the curve of the gradient function which is above the x-axis matches the parts of original
function that are increasing.

x

y

dy/dx = 3x2 − 6x

y = x3 − 3x2 + 4

(2, 0)O

2 Show that the function  is an increasing function for f (x) = x5 − x−3 x > 1.

Solution:

    f (x) = x
5 − x

−3

    f ′ (x) = 5x
4 + 3x

−4

For an increasing function,  must be > 0.f ′ (x)

∴    5x
4 + 3x

−4 > 0

∴    5x
4 +

3

x4
> 0

Any value of x > 1 will give a positive result.

3 Find the values of x for which the function  is decreasing.f (x) = x3 + 3x2 − 9x + 6

Solution:

    f (x) = x
3 + 3x

2 − 9x + 6

    f ′ (x) = 3x
2 + 6x − 9

For an decreasing function,  must be < 0.f ′ (x)

    3x
2 + 6x − 9 < 0

    3 (x2 + 2x − 3) < 0

    3 (x + 3) (x − 1) < 0

∴   − 3 < x < 1
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OCR C1 / AQA C1 / C2

20.1 Tangent & Normals

Recall that once the gradient of a line has been found, then the gradient of the normal to the line can also be
found using the key equation below:

m1 . m2 = −1

where  gradient of the tangent and   gradient of the normal.m1 = m2 =

Remember that the equation of a straight line that passes through the point  is given by(x1, y1)

y − y1 = m1 (x − x1)

and the equation of the normal is given by:

y − y1 = −
1

m1

(x − x1)

P

x

y

Tangent at PNormal to Tangent

Tangents and normals to a curve

20.1.1  Example:

1 Find the equation of the tangent to the curve  at the point (2, 6):y = 2x2 − 3x + 4

Solution:

   
dy

dx
= 4x − 3

 x = 2,  
dy

dx
= 8 − 3 = 5 At (2, 6)

Equation of tangent:

   y − 6 = 5 (x − 2)

    y = 5x + 4
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2 Show that there are 2 points on the curve  at which the gradient is 2, and find the
equations of the tangent at these points.

y = x2 (x − 2)

Solution:

    y = x
2 (x − 2)

      = x
3 − 2x

2

∴    
dy

dx
= 3x

2 − 4x

     
dy

dx
= 2Now:

∴               3x
2 − 4x = 2

   3x
2 − 4x − 2 = 0

   x =
4 ± 16 − 4 × 3 × (−2)

6

   x =
4 ± 2 10

6
=

2 ± 10

3

∴ there are 2 points at which the gradient is 2 etc…

3 Find the equation of the tangent to the curve  at the points where the curve
cuts the x-axis, and find the co-ordinates of the point where the tangents intersect. 

y = (x − 2) (x + 6)

Solution:
Function cuts the x-axis at (2, 0) and (−6, 0)

     y = (x − 2) (x + 6) ⇒ x
2 + 4x − 12

     
dy

dx
= 2x + 4

At point (2, 0), and ∴ gradient x = 2 = 8

Hence equation of tangent is:

    y − 0 = 8 (x − 2)

      y = 8x − 16       (1)

At point (−6, 0), and ∴ gradient x = −6 = −8

Hence equation of tangent is:

    y − 0 = −8 (x + 6)

      y = −8x − 48     (2)

Solve simultaneous equations (1) & (2) to find intersection at:

    8x − 16 = −8x − 48

      16x = −32

          x = −2

∴  y = −16 − 16 = −32

Co-ordinate of intersection of tangents is (−2, −32)
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4 Find the equation of the tangents to the curve  which are parallel to the line
.

y = 2x3 − 5x
y = x + 2

Solution:
Gradient of tangents have the same gradients as the line

 which has a gradient of 1. 
Therefore, find the points on the curve where the
gradients are 1.

      

Hence when:

The two points are: (1, −3) & (−1, 3)
Tangent at (1, −3):  

Tangent at (−1, 3):  

y = x + 2

dy
dx

= 6x2 − 5 = 1

⇒ 6x2 = 6 ⇒  x2 = 1

∴ x = ±1

x = 1   y = 2 − 5 = −3
x = −1 y = −2 + 5 = 3

y + 3 = 1 (x − 1)
 y = x − 4

y − 3 = 1 (x + 1)
 y = x + 4

x

y

y=2x3−5x

y=x+2

(1, −3)

(−1, 3)

5 Find the equation of the normal to the curve  at the point where . Find the co-
ordinates of the points at which this normal meets the curve again.

y = 2x − x3 x = −1

Solution:
At the point where .x = −1,  y = −1

       
dy

dx
= 2 − 3x

2

 
dy

dx
= 2 − 3 (−1)2 = −1At (−1, −1)

∴   = 1gradient of normal 

 y + 1 = 1 (x + 1)Equation of normal:

   ⇒       y = x

Solve for x & y in (1) & (2):

   y = x    (1)

   y = 2x − x
3     (2)

∴ x = 2x − x
3Substitution into (2) 

   ⇒  x
3 − 2x + x = 0

   ⇒  x (x2 − 1) = 0

     x (1 + x) (1 − x) = 0

∴   x = 0,  − 1,   1and

∴ Normal meets curve at (−1, −1) (given) and also (0, 0) & (1, 1)
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20.2 Stationary Points

This is one of the most important applications of differentiation. Stationary points often relate to a maximum or
minimum of an area, volume or rate of change or even a profit/loss in a business. Here, the rate of change is
momentarily nil and the gradient is zero, hence they are called stationary points. A stationary point is one where
the function stops increasing or decreasing. 

There are two types of stationary point; a turning point and an inflection point.

j Turning Points are points where a graph changes direction and the gradient changes sign, they can be
either a maximum or a minimum point. (see point A & C on diagram below)

j An Inflection point changes its sense of direction, but the gradient does not change sign, 
(see point B on diagram below)

j At all these points, the gradient of the tangent is 0

j To find a turning point, let 
dy
dx

= 0

j Curves can have more than one max or min point, hence these may be named as a Local max or min.

A

B

C

Maximum (local)

Minimum (local)

Turning points illustrated at point A and C

20.2.1  Example: Stationary Points

1 Find the co-ordinates for the two stationary points of the equation :2x2 + xy + y2 = 64

Solution

Differentiating each term to find the :dy / dx

   4x +
dy

dx
+ 2y

dy

dx

   
dy

dx
(1 + 2y) = −4x

   
dy

dx
= −

4x

(1 + 2y)

= 0Stationary point when gradient 

   
dy

dx
= −

4x

(1 + 2y)
= 0

 ∴     4x = 0 ⇒  x = 0

yNow solve original equation for 

   0 + 0 + y
2 = 64

 ∴  y = 64 = ±8

(0,  8)  & (0, −8)Co-ordinates are: 
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20.3 Maximum & Minimum Turning Points

From the diagram, moving left to right, as x increases,

 is positive, but decreasing. 

The gradient decreases to 0 at the local maximum, then

becomes negative. 

The gradient continues to become more negative as x

increases, i.e.  continues to decrease.

dy
dx

dy
dx

 +
+

+ –

–

–

 dy/dx = 0

 dy/dx  is +ve
   

           & decreasing

 dy/dx  is –ve
   

           & decreasing
           (getting more –ve)

x increasing

 dy/dx > 0  dy/dx < 0

There are three ways of distinguishing between max & min points:

j by testing the value of y either side of the turning point

j by the Second Derivative Test

j by testing the gradient either side of the turning point

20.3.1 Testing the value of y

Finding the value of y either side of the turning point is one method of finding a max and min. However, most
questions expect you to find the derivative of the function and then solve to give the co-ordinates of the turning
points. In which case the other two methods are preferred.

20.3.2 Second Derivative Test for Max or Min

The derivative  represents how y changes w.r.t x. We need an expression to show how  changes w.r.t to x.
dy
dx

dy
dx

Differentiating  to find  will give us the required expression. 
dy
dx

d
dx ( )dy

dx

This is called the second derivative and is written .
d2y

dx2

If   and   then the point must be a maximum, because  is decreasing as x increases.
dy
dx

= 0
d2y

dx2 < 0
dy
dx

Similar arguments exist for the minimum case, so:

If   and   then the point must be a minimum, because  is increasing as x increases.
dy
dx

= 0
d2y

dx2 > 0
dy
dx

There is an exception to these rules, which is when  and  .
dy
dx

= 0
d2y

dx2 = 0

In this example .

    when 

    when 

(Note: a similar graph is produced when  and n is
even and ≥ 4).

y = x4

dy
dx

= 4x3 ⇒ 0 x = 0

d2y

dx2 = 12x2 ⇒ 0 x = 0

y = xn
y = x4

0

y

x

When , we have either a maximum, a minimum or some other arrangement. So the 2nd derivative test

does not always reveal the solution and the third method should be used.

d2y

dx2 = 0
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20.3.2.1  Example:

1 Find the turning points of  and distinguish between them.y = x2 (6 − x)

Solution:

  y = 6x
2 − x

3  ∴ 
dy

dx
= 12x − 3x

2

 12x − 3x
2 = 0Let

       3x (4 − x) = 0

∴    x = 0      4and

  
d2y

dx2
= 12 − 6x

 x = 4 
d2y

dx2
= 12 − 24 = −12 when is negative

 x = 0 
d2y

dx2
= 12 − 0 = 12 when is positive

∴  (4, 32) is a maximum and (0, 0) is therefore a minimum.

2 Find the co-ordinates for the turning points of  and identify the max and min
points.

y = x3 − 3x2 + 4

Solution:

    y = x
3 − 3x

2 + 4

  ∴ 
dy

dx
= 3x

2 − 6x

 3x
2 − 6x = 0Let

     3x (x − 2) = 0

∴ x = 0      2and

 x = 0,  y = 4When 

 x = 2,  y = 0When 

 (0,  4)  (2,  0)Co-ordinates of the turning points are:

  
d2y

dx2
= 6x − 6

 x = 0 
d2y

dx2
= −6  when is negative i.e. maximum

 x = 2 
d2y

dx2
= 6  when is positive  i.e. minimum

∴   (0, 4) is a maximum and (2, 0) is therefore a minimum.
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20.3.3 Gradient Test for Max or Min

With this method you need to test the gradient either side of the turning point. An example will illustrate the
method:

20.3.3.1  Example:

Find the co-ordinates of the stationary points of the function y = 2x3 + 3x2 − 72x + 5

Solution:

   
dy

dx
= 6x

2 + 6x − 72

  6x
2 + 6x − 72 = 0Let:

÷6     x2 + x − 12 = 0

  (x + 4) (x − 3) = 0

∴       x = −4,  or 3

Examine the gradients either side of the solutions:

Use values of x = −4 ± 1,    3 ± 1and

x = −5,  
dy

dx
= 150 − 30 − 72 = 48 If i.e. positive

x = −3,  
dy

dx
= 54 − 18 − 72 = −36 If i.e. negative

x = 2,  
dy

dx
= 24 + 18 − 72 = −30 If i.e. negative

x = 4,  
dy

dx
= 96 + 24 − 72 = 48 If i.e. positive

 

−5 (−4) −3

dy

dx
+ −

2 (3) 4

dy

dx
− +

∴ (−4,  213)  is a max, (3, −13)  is a min
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20.4 Points of Inflection & Stationary Points (Not in Syllabus)

A point of inflection is one in which the function changes its sense of direction. It changes from a clockwise
direction to an anti-clockwise direction, or from concave downward to being concave upward, or visa-versa.

Inflection points can be either stationary or non-stationary.

Stationary Inflection Points

The gradient of the curve leading to point A is positive,
decreases to 0, and then increases again, but remains
positive.
Similarly, the gradient leading to point B is negative,
decreases to 0, then becomes negative again.

The tangent at the inflection point is parallel with the x

axis and so , hence it is a stationary point.

The second derivative is also 0 i.e. 

At an inflection point, .

The tangent crosses the curve at the inflection point.

dy
dx

= 0
d2y

dx2 = 0

d3y

dx3 ≠ 0

B

Inflection Points
–
–

–
–
–
–

0

+
+

+

+
+

+
0

A

Non-stationary Inflection Points

In this case,  , but 

The tangent crosses the curve at the inflection point.

dy
dx

≠ 0
d2y

dx2 = 0

D

Inflection Point

20.5 Classifying Types of Stationary Points
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20.6 Max & Min Problems (Optimisation)

j In any max/min question differentiating twice will generally be needed. Once to solve  to
find the x values of the max/min points and a second time to determine if they are maxima or minima.
(  is a minima).

dy / dx = 0

d2y / dx2 = +ve

j An area problem will differentiate to a linear equation, with only one solution for the optimum point.

j A volume problem will differentiate to a quadratic equation, and a choice of a max and min will
appear. 

j There will be often a question asking for an explanation of why one of the answers is a valid answer
and the other is not. In this case, plug the values found back into the original equations and see if they
make sense.

20.6.1  Example:

1 A rectangular piece of ground is to be fenced off with 100m of fencing, where one side of the area
is bounded by a wall currently in place. What is the maximum area that can be fenced in?

Solution:

Method of attack:
a) What is max/min (area in this case)
b) Find a formula for this (one variable)
c) Differentiate formula and solve for 
d) Substitute answer back into the original formula

dy / dx = 0

100–2x

xx

 Area = x (100 − 2x)

  = 100x − 2x
2

    
dA

dx
= 100 − 4x

 100 − 4x = 0    (d2y

dx2
= −4,  ∴ a maximum)For a Max/Min

  ∴           x = 25

= 25 (100 − 50) = 1250 m2Max Area 

2 A cuboid has a square base, side x cm. The volume of the cuboid is 27 cm3.

Given that the surface area  find the value of x for the minimum surface area. A = 2x2 + 108x−1

      A = 2x
2 + 108x

−1

   
dA

dx
= 4x − 108x

−2

 
dA

dx
= 4x − 108x

−2 = 0For min/max

  ∴      4x =
108

x2

    4x
3 = 108

     x3 = 27     (dA

dx
= 4 + 216x

−3)
      x = 3        (    ⇒ 4 + 216 × 3

−3 ⇒ +ve ∴ a min)
Minimum surface area is when the cuboid is a cube with all sides equal to x.

171



My A Level Maths Notes

3 A piece of wire, length 4m, is cut into 2 pieces (not necessarily equal), and each piece is bent into a
square. How should this be done to have:

a) the smallest total area from both squares?

b) the largest total area from both squares?

Solution:
Draw a sketch!

4 – x

x

¼x

1 – ¼x

¼x

1 – ¼x

Total area is:

   Area = (1

4
x)

2

+ (1 −
1

4
x)

2

    =
1

16
x

2 + (1 −
1

4
x) (1 −

1

4
x)

    =
1

16
x

2 + 1 −
1

4
x −

1

4
x +

1

16
x

2

    =
2

16
x

2 −
1

2
x + 1 

    =
1

8
x

2 −
1

2
x + 1

   
dy

dx
=

1

4
x −

1

2

   
1

4
x −

1

2
= 0      Let (for max/min)

  
1

4
x =

1

2

∴     x = 2

 
d2y

dx2
=

1

4
 Now i.e. positive, ∴ a minimum

a) smallest area is therefore when , (i.e when wire cut in half)x = 2

   Area =
1

8
(22) −

1

2
(2)  + 1

    =
1

2
 m2

b) biggest area must be when , ⇒1 m2x = 0
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4 A hollow cone of radius 5cm and height 12 cm, is placed on a table. What is the largest cylinder
that can be hidden underneath it?

Solution:
Recall that:

Volume of cone 

Volume of cylinder 

= 1
3πr2h

= πr2h

5

r

x

12

Consider the cone split into two cones…

Ratio of radius/height of large cone to small cone:

    5 : 12 = r : x

∴           x =
12

5
r

∴ = 12 −
12

5
rHeight of cylinder

   = πr
2 (12 −

12

5
r)Volume of cylinder

          = 12πr
2 −

12

5
πr

3

    
dV

dx
= 24πr −

36

5
πr

2

          24πr −
36

5
πr

2 = 0Min or max:

  120πr − 36πr
2 = 0× 5

      πr (10 − 3r) = 0

       r = 0  or  
10

3
   r = 0 means no cylinder - reject soln

∴ = π (10

3 )
2

(12 −
12

5
×

10

3 )Max Volume

       = π (10

3 )
2

(12 − 8) = π
100

9
× 4

       =
400

9
π
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5 A right angled ‘cheese’ style wedge has two
sides a, and one side b and angle ∠OMN 90°,
with height h.

The perimeter of the base is 72 cm and the
height is 1/16th of side b.

Find the value of a to maximise the volume.

a
h

O

M

N

a

b

Solution:
Need to find a formula for the volume in terms of a, so that this can be differentiated to show the
change of volume w.r.t to a. Need to also find h in terms of a.

Using the perimeter to relate volume and a:

  P = 2a + b = 72

∴     b = 72 − 2a

Area of  base =
1

2
a × a

  h =
b

16
= (72 − 2a

16 )
Volume  =

1

2
a

2
h =

1

2
a

2 (72 − 2a

16 )
  =

1

32
a

2 (72 − 2a)

  =
72

32
a

2 −
2

32
a

3

     V =
9

4
a

2 −
1

16
a

3

 
dV

dr
 =

18

4
a −

3

16
a

2

 
dV

dr
=

9

2
a −

3

16
a

2 = 0For max

        =
72

16
a −

3

16
a

2 = 0     (Common denominator)

        = a (72 − 3a) = 0

     a = 0 or 24

      
d2V

da2
=

72

16
−

6

16
a    (test for max/min)

  a = 24 
d2V

dr2
=

72

16
−

144

16
= −

72

16
 For i.e. −ve result hence a maximum

∴ a = 24 cm Maximum volume when 

  b = 72 − 48 = 24

  h =
24

16
= 1

1

2
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6 A cylinder has height h and radius r. The

volume of the cylinder is 250 cm3.

Find the optimum value of r to ensure the

surface area is a minimum. h

r

Solution:
Need to find a formula for the volume and surface area in terms of h & r. Then eliminate one of the
variables to give a function that can be differentiated.

      A = 2πr
2 + 2πrh  (1)Surface area:

 V = πr
2
h    (2)Volume of cylinder

h  h =
V

πr2
 Eliminate to give V in terms of r: from (2)

     A = 2πr
2 + 2πr ×

V

πr2
   Surface area: Substitute 2 into 1

         = 2πr
2 + 2Vr

−1

           
dA

dr
= 4πr − 2Vr

−2   (3)

       
dA

dr
= 0For max/min:

∴    4πr −
2V

r2
= 0

       4πr
3 − 2V = 0

    r
3 =

2V

4π

     r = 3
V

2π

     r = 3
250

2π
=

5
3 π

      (exact answer)

    r = 3·414 (4sf)

To determine if this is a max or min, find the second derivative:

    
dA

dr
= 4πr − 2Vr

−2

    
d2A

dr2
= 4π + 4Vr

−3

    
d2A

dr2
> 0     r > 0

The second derivative will be positive for any r > 0, hence a minimum.

What change of r would there be if the volume was increased to 2000 cm3?

   r = 3
2000

2π
=

10
3 π

   r = 6·828    r is doubled
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7 A piece of cardboard 9m × 24m is cut out to make a box. What is the value of z for the optimum
volume.

Solution:
Write an equation for volume in terms of

z: 

Area of base of box =

(24 − 2z) (9 − 2z)
9m

24m

Zm

∴    V = z (24 − 2z) (9 − 2z)Volume of box: 

      = z (216 − 48z − 18z + 4z
2)

      = z (216 − 66z + 4z
2)

      = 4z
3 − 66z

2 + 216z

     
dV

dz
 = 12z

2 − 132z + 216

     12z
2 − 132z + 216 = 0     for max/min

     z
2 − 11z + 18 = 0      divide by 12

     (x − 2) (x − 9) = 0

   ∴  x = 2   or   x = 9

When Hence  is invalid.x = 9;  (9 − 2z) ⇒ (9 − 18) ⇒ −9    x = 9

     
d2V

dz2
= 24z − 132

= 2;       
d2V

dz2
= 48 − 132 = −84   If  z   Hence a maximum volume

EAFQLA

20.7 Differentiation Digest

If   and   then the point is a maximum

If   and   then the point is a minimum

If   and   then the point is either a maximum, minimum, 

a point of inflection or some other arrangement

dy

dx
= 0

d2y

dx2
< 0

dy

dx
= 0

d2y

dx2
> 0

dy

dx
= 0

d2y

dx2
= 0
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Module C2
Core 2 Basic Info

Trigonometry; Sequences and series; Algebra; Integration.

The C2 exam is 1 hour 30 minutes long and is in two sections, and worth 72 marks (75 AQA).

Section A (36 marks) 5 – 7 short questions worth at most 8 marks each. 

Section B (36 marks) 2 questions worth about 18 marks each.

OCR Grade Boundaries.
These vary from exam to exam, but in general, for C2, the approximate raw mark boundaries are:

Grade 100% A B C

Raw marks 72 60 ± 2 53 ± 3 46 ± 2

UMS % 100% 80% 70% 60%

The raw marks are converted to a unified marking scheme and the UMS boundary figures are the same for all exams.

C2 Contents

Module C1 19

Module C2 177

21 • C2 • Algebraic Division 181

22 • C2 • Remainder & Factor Theorem Updated v3 (Feb 2013) 183

23 • C2 • Sine & Cosine Rules Updated v2 (Mar 2013) 187

24 • C2 • Radians, Arcs, & Sectors Updated v2 (Apr 2013) 199

25 • C2 • Logarithms   Updated v5 (Apr 2013) 205

26 • C2 • Exponential Functions    Updated v3 (Feb 2013) 219

27 • C2 • Sequences & Series Updated v4 (Apr 2013) 225

28 • C2 • Arithmetic Progression (AP) Updated v4 (Mar 2013) 235

29 • C2 • Geometric Progression (GP) Updated v5 (Apr 2013) 243

30 • C2 • Binomial Theorem   Updated v4 (Mar 2013) 255

31 • C2 • Trig Ratios for all Angles Updated v2 (Apr 2013) 271

32 • C2 • Graphs of Trig Functions  Updated v4 (Mar 2013) 283

33 • C2 • Trig Identities Updated v1 (Feb 2013) 289

34 • C2 • Trapezium Rule Updated v3 (Apr 2013) 293

35 • C2 • Integration I 297

Module C3 307

Module C4 451

68 • Apdx • Catalogue of Graphs    Updated 593

C2 Assumed Basic Knowledge

Knowledge of C1 is assumed, and you may be asked to demonstrate this knowledge in C2. 

You should know the following formulae, (many of which are NOT included in the Formulae Book).
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1 Algebra

Remainder when a polynomial  is divided by f (x) (x − a)   f (a)is

2 Progressions

    U n = a + (n − 1) d     AP

    Sn =
n

2
[2a + (n − 1) d]    AP

    U n = ar
n − 1      GP

    Sn =
a (1 − rn)
(1 − r)

     GP

    S∞ =
a

(1 − r)
    | r | < 1       GPif

3 Trig

    
a

sin A
=

b

sin B
=

c

sin C

    a
2 = b

2 + c
2 − 2bc cos A

    tan θ ≡
sin θ
cos θ

    cos
2 θ + sin

2 θ ≡ 1

    1 + tan
2 θ ≡ sec

2 θ

    cot
2 θ + 1 ≡ cosec

2 θ

    △ = ½ ab sin CArea of 

    π radians = 180
°

    L = rθArc length of a circle, 

     A = ½ r2θArea of a sector of a circle,

4 Differentiation and Integration

Function  f (x) Dif f erential dy
dx = f ′ (x)

axn naxn − 1

Function  f (x) Integral ⌠⌡ f (x) dx

axn a

n + 1
 xn + 1 + c n ≠ −1

     Ax = ∫
 b

a

y dx (y ≥ 0)Area between curve and x-axis 

     Ay = ∫
 b

a

x dy (x ≥ 0)Area between curve and y-axis 

5 Logs

        sa
b = c ⇔  b = loga c

    loga x + loga y ≡ loga (xy)

    loga x − loga y ≡ loga (x

y)
           k loga x ≡ loga (xk)
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 Module C2

C2 Brief Syllabus

1 Algebra and Functions

j use of the factor and remainder theorem

j carry out simple algebraic division (division of a cubic by a linear polynomial)

j sketch the graph of , where , and understand how different values of a affect the shape of the graphy = ax a > 0

j understand the relationship between logarithms, indices, and the laws of logs (excluding change of base)

j use logarithms to solve equations of the form , and similar inequalities.ax = b

2 Trigonometry

j use the sine and cosine rules in the solution of triangles (excluding the ambiguous case of the sine rule)

j use the area formula  △ = ½ ab sin C

j understand the definition of a radian, and use the relationship between degrees and radians

j use the formulae  and  for the arc length and sector area of a circles = rθ A = ½ r2θ

j relate the periodicity and symmetries of the sine, cosine and tangent functions to the form of their graphs

j use the identities  and tan θ ≡
sin θ
cos θ

cos2 θ + sin2 θ ≡ 1

j use the exact values of the sine, cosine and tangent of 30°, 45°, 60° e.g cos 30 = ½ 3

j find all the solutions, within a specified interval, of the equations and
of equations (for example, a quadratic in ).

sin (kx) = c,  cos (kx) = c, tan (kx) = c,  
cos x

3 Sequences & Series

j understand the idea of a sequence of terms, and use definitions such as  and relations such as
   to calculate successive terms and deduce simple properties

un = n2

un + 1 = 2un

j understand and use  notation∑

j recognise arithmetic and geometric progressions 

j use the formulae for the n-th term and for the sum of the first n terms to solve problems involving arithmetic or
geometric progressions (including the formula of the first n for the sum of natural numbers)

j use the condition  for convergence of a geometric series, and the formula for the sum to infinity of a
convergent geometric series

| r | < 1

j use the expansion of  where n is a positive integer, including the recognition and use of the notations 

and  (finding a general term is not included).

(a + b)n ( )n

r

n!

4 Integration 

j understand indefinite integration as the reverse process of differentiation, and integrate  (for any rational n
except −1), together with constant multiples, sums and differences

xn

j solve problems involving the evaluation of a constant of integration, (e.g. to find the equation of the curve

through (−2, 1) for which )
dy
dx

= 3x + 2

j evaluate definite integrals

j use integration to find the area of a region bounded by a curve and lines parallel to the coordinate axes, or
between two curves or between a line and a curve

j use the trapezium rule to estimate the area under a curve, and use sketch graphs, in simple cases, to determine
whether the trapezium rule gives an over-estimate or an under-estimate.
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21 • C2 • Algebraic Division

21.1 Algebraic Division Intro

This is about dividing polynomials. Any polynomial expression with order m, which is divided by another
polynomials, order n, will have an answer of order . For example a cubic expression divided by a linear
expression will have a quadratic solution.

(m − n)

Note the names of the parts of a division:

Dividend

Divisor
= Quotient +

Remainder

Divisor

For a function  divided by  we can write:f (x) (ax − b)
f (x)

ax − b
= g (x) +

r

ax − b

           f (x) = g (x) (ax − b) + r

A linear polynomial divided by a linear polynomial; result:  is a constant,  is a constant.Quotient Remainder

   
6x − 1

2x + 1
  6x − 1 ≡ A (2x + 1) + R

A quadratic polynomial divided by a linear polynomial; result:  is linear,  is a constant.Quotient Remainder

  
x2 + 6x − 1

2x + 1
  x

2 + 6x − 1 ≡ (Ax + B) (2x + 1) + R

A cubic polynomial divided by a linear polynomial; result:  is a quadratic,  is a constant.Quotient Remainder

  
x3 + x2 + 6x − 1

2x + 1
  x

3 + x
2 + 6x − 1 ≡ (Ax

2 + Bx + C) (2x + 1) + R

21.2 Long Division by ax + b

Long division is a useful technique to learn, although other methods can be used.

21.2.1  Example:

1 Divide  by 2x3 − 3x2 − 3x + 7 x − 2

   2x2 + x − 1

x − 2 ) 2x3 − 3x2 − 3x + 7
  

 2x3 by x = 2x2Divide

   2x3 − 4x2  x − 2 by 2x2Multiply

                  x2 − 3x + 7  x2 by x = xSubtract & divide

                  x2 − 2x  x − 2 by xMultiply

                        − x + 7  − x by x = −1Subtract & divide

−  x + 2  x − 2 by − 1Multiply

5 Subtract to give the remainder
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2 Divide  by 2x3 + 5x2 − 3 x + 1

Rewrite to add a place holder for the missing x term. 

Divide  by 2x3 + 5x2 + 0x − 3 x + 1

   2x2 + 3x − 3

x + 1 ) 2x3 + 5x2 + 0x − 3
  

 2x3 by x = 2x2Divide

   2x3 + 2x2  x + 1 by 2x2Multiply

               3x2 + 0x − 3  x2 by x = 3xSubtract & divide

               3x2 + 3x  x + 1 by 3xMultiply

                     − 3x − 3 − 3x by x = −3Subtract & divide

                     − 3x − 3  x + 1 by − 3Multiply

0 Subtract to give the remainder

21.3 Comparing Coefficients

Dividing a cubic equation by a linear equation means that the Quotient will be a quadratic.

Using this, we can compare coefficients. Thus:

  
5x3 + 18x2 + 19x + 6

5x + 3
= ax

2 + bx + c

  5x
3 + 18x

2 + 19x + 6 = (5x + 3) (ax
2 + bx + c)

       = 5ax
3 + 5bx

2 + 5cx + 3ax
2 + 3bx + 3c

       = 5ax
3 + 5bx

2 + 3ax
2 + 5cx + 3bx + 3c

Comparing coefficients, starting with the constant term, which is usually the easiest to find:

constant term :→        6 = 3c     ∴ c = 2

x term :→    19 = 5c + 3b ∴ 19 − 10 = 3b b = 3

x
2 term :→    18 = 5b + 3a ∴ 18 − 15 = 3a a = 1

x
3 term :→      5 = 5a     ∴ a = 1 aconfirms value of 

 ∴ 
5x3 + 18x2 + 19x + 6

5x + 3
= x

2 + 3x + 2

Now read the next section on the Remainder & Factor Theorem.
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22 • C2 • Remainder & Factor Theorem
AQA C1 / OCR C2

22.1 Remainder Theorem

This is about dividing polynomials, (with order > 2), by a linear term.

If a polynomial  is divided by  then the remainder is f (x) (x − a) f (a)

This can be restated like this:

f (x) = (x − a) g (x) + f (a)   f (a) =  where a constant, i.e. the remainder

Note that the order of  is one less than .g (x) f (x)

Similarly:

If a polynomial  is divided by  then the remainder is f (x) (ax − b) f (b
a)

22.1.1  Example:

1 Find the remainder when  is divided by .3x3 − 2x2 − 5x + 2 x − 2

Solution:

Let 

    and 

Hence, find :

Hence, we can say:

This can be seen graphically here:

f (x) = 3x3 − 2x2 − 5x + 2

a = 2

f (a)
    f (2) = 3 × 23 − 2 × 22 − 10 + 2

     = 24 − 8 − 8

     = 8

        f (x) = (x − 2) g (x) + 8

(2, 8)

x

y

-2 -2.5 -1 .-0.5 0 0.5 1 1.5 2

-2.

5

10

8

y = 3x3 − 2x2 − 5x + 2

Remainder is 8 when x = 2

2 If  is divided by , the remainder is 4, Find the value of c. x3 − 4x2 + x + c x − 2

Solution:
Substitute  into x = 2 f (x)

f (2) = 2
3

− 4 × 2
2 + 2 + c = 4

   8 − 16 + 2 + c = 4

          c = 4 + 6

          c = 10

183



My A Level Maths Notes

22.2 Factor Theorem

This follows from the Remainder Theorem.

For a polynomial , if  then  is a factor.f (x) f (a) = 0 (x − a)

i.e. the remainder is zero if  is a factor.(x − a)

This can be used to find the factors of any polynomial, usually after a bit of trial and error.

One immediate effect of this rule is that if  then  is a factor. In other words, if all the
coefficients of the expression add up to zero then  is a factor.

f (1) = 0 (x − 1)
(x − 1)

22.2.1  Example:

1 Find the factors for x3 + 6x2 + 5x − 12

Solution:
The coefficients of the expression add up to zero. 

 1 + 6 + 5 − 12 = 0

Therefore,  is a factor.(x − 1)

 x
3 + 6x

2 + 5x − 12 ≡ (x − 1) (x2 + bx + 12)

x
2 6x

2 ≡ −x
2 + bx

2Compare coefficients:

              6 = −1 + b      ∴   b = 7

 x
3 + 6x

2 + 5x − 12 ≡ (x − 1) (x2 + 7x + 12)

 x
3 + 6x

2 + 5x − 12 ≡ (x − 1) (x + 3) (x + 4)

2 If , show that  is a factor and find the other two linear factors.f (x) = x3 − 5x2 − 2x + 24 (x − 4)

Solution:
If  is a factor then (x − 4) f (4) = 0

 f (4) = 4
3

− 5 × 4
2

− 8 + 24

  = 64 − 80 − 8 + 24

  = 0

The function  can now be written:f (x)

 x
3 − 5x

2 − 2x + 24 ≡ (x − 4) (x2 + bx + c)

   24 = −4cCompare constants:

      c = −6

   − 2 = c − 4bCompare x terms:

       − 2 = −6 − 4b

       b = 1

∴ x
3 − 5x − 2x + 24 ≡ (x − 4) (x2 + x − 6)

     f (x) = (x − 4) (x − 3) (x + 2)

(x − 3)  & (x + 2)  f (x)Show that are factors of 

 f (3) = 27 − 45 − 6 + 24 = 0     ∴ (x − 3)  is a factor.

 f (−2) = −8 − 20 + 4 + 24 = 0  ∴ (x + 2)  is a factor.

 f (x) = (x − 4) (x − 3) (x + 2)
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22 • C2 •  Remainder & Factor Theorem

3 If , and that  &  are factors, find the values of b & c, and
the remaining factor.

f (x) = 2x3 + x2 + bx − c (x − 1) (x + 1)

Solution:
As  is a factor then (x − 1) f (1) = 0

 f (1) = 2 + 1 + b − c = 0

  b = c − 3        … (1)

As  is a factor then (x + 1) f (−1) = 0

 f (−1) = −2 + 1 − b − c = 0

  b = −c − 1             … (2)

∴    c − 3 = −c − 1     combine (1) & (2)

  c = 1

∴     b = −2      substitute in (2)

∴  f (x) =  2x
3 + x

2 − 2x − 1  … (3)function is:

(x − 1)  & (x + 1)  (2x + t)Since are factors, let the 3rd factor be 

∴    f (x) = (x − 1) (x + 1) (2x + t)      … (4)

Compare constants from (3) and (4):

 − 1 = −1 × 1 × t

∴    t = 1

     f (x) = (x − 1) (x + 1) (2x + 1)Hence:

4 If , and that when  is divided by  the remainder is 2 &
when  is divided by  the remainder is 5. Find the values of a & b.

f (x) = 2x3 − ax2 − bx + 4 f (x) (x − 2)
f (x) (x + 1)

Solution:
For  then the remainder is  (x − 2) f (2) = 2

 f (2) = 2 × 8 − 4a − 2b + 4 = 2

         = 16 − 4a − 2b + 4 = 2

 ∴ − 4a − 2b = 2 − 4 − 16 = −18

 ∴   2a + b = 9      … (1)

For  then the remainder is  (x + 1) f (−1) = 5

 f (−1) = −2 − a + b + 4 = 5

 − a + b = 5 − 4 + 2

  b = 3 + a       … (2)

∴    2a + (3 + a) = 9           combine (1) & (2)

 3a + 6 = 9

            a = 2

b = 3 + 2 = 5        substitute in (2) 

∴ f (x) = 2x
3 − 2x

2 − 5x + 4  QED
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5 Find the factors for x3 + 6x2 + 11x + 6

Solution:
To start the process, choose some values of x to try, but what?

The function has three linear factors, say .  Hence .(x ± s) (x ± t) (x ± u) stu = 6

Taking the factors of the constant, 6, will give us our starting point. 

Factors of 6 are: 1, 2, 3, 6 and could be positive or negative. The likely factors to use are: 1, 2, 3. 

Possible factors are .(x ± 1) , (x ± 2) , (x ± 3) , (x ± 6)
Choose −6, −3, −2, −1 to start the process.

− 6   f (−6) = (−6)3 + 6 (−6)2
− 66 + 6Try 

        = −216 + 216 − 60

        = −60

     ∴      x + 6  f (−6) ≠ 0is NOT a factor. i.e. 

− 3   f (−3) = (−3)3 + 6 (−3)2
− 33 + 6Try 

        = −27 + 54 − 27

        = 54 − 54

        = 0

     ∴      x + 3 is a factor

− 2   f (−2) = (−2)3 + 6 (−2)2
− 22 + 6Try 

        = −8 + 24 − 22 + 6

        = 0

     ∴      x + 2 is a factor

− 1   f (−1) = (−1)3 + 6 (−1)2
− 11 + 6Try 

        = −1 + 6 − 11 + 6

        = 0

     ∴      x + 1 is a factor

  f (x) = (x + 3) (x + 2) (x + 1)Hence:

22.3 Topic Digest

j For a polynomial , if  then  is a factor of f (x) f (a) = 0 (x − a) f (x)

j For a polynomial , if  then  is a factor of f (x) f (b
a) = 0 (ax − b) f (x)

j A polynomial  divided by  has a factor of f (x) (ax − b) f (b
a)
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23 • C2 • Sine & Cosine Rules

23.1 Introduction

The Sine & Cosine Rules covers the trig rules for any shaped triangles, not just right-angled triangles studied
previously.

In order to solve these triangle problems, we need to know the value of one side plus two other bits of
information, such as 2 sides, 2 angles, or one side and an angle.

There are 4 cases to consider with two rules:

j Sine Rule

j 2 sides + 1 opposite angle (SSA)

j 2 angles + 1 side (AAS or ASA)

j Cosine Rule

j 3 sides (SSS)

j 2 sides + 1 included angle (SAS)

23.2 Labelling Conventions & Properties

By convention, the vertices are labelled with
capital letters and the opposite sides by the
corresponding lower case letter.

i.e. a is opposite 
b is opposite 
c is opposite 

For sides a & b, C is called the included angle
etc.

∠A

∠B

∠C

C

A B

ab

c

Recall that:

j Angles in a triangle add up to 180°

j The longest side of the triangle is opposite the largest angle, whilst the shortest side is opposite the

smallest angle
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23.3 Sine Rule

The Sine rule, for any triangle gives: 

  
a

sin A
=

b

sin B
=

c

sin C
 use this version with an unknown side -  unknown on top

or

  
sin A

a
=

sin B
b

=
sin C

c
  use this version with an unknown angle -  unknown on top

i.e. put the unknown on top.

23.3.1 Sine Rule Proof

C

A B

ab

c

h

C

A
B

a

b

c

h

Case 1 Case 2

DD

Case 1 (acute angled triangle)

 △ACD h = b sin AFrom

 △BCD h = a sin BFrom

 ∴ b sin A = a sin B

 ∴   
a

sin A
=

b

sin B

 
a

sin A
=

c

sin C
Similarly:

Case 2 (obtuse angled triangle)

 △ACD h = b sin AFrom

 △BCD h = a sin (180° − B)From

    = a sin B

∴         b sin A = a sin B

 
a

sin A
=

c

sin C
Similarly:
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23 • C2 •  Sine & Cosine Rules

23.3.2  Example:

1 Find the remaining angle and missing sides of △ABC:

C

A B

a
b = 31cm

c

100°

29°

Remaining angle, ∠A = 180 − 100 − 29 = 51°

 
a

sin 51
=

31

sin 29
=

c

sin 100

∴      a =
31 sin 51

sin 29

  a = 49·69 cm (2dp)

 
31

sin 29
=

c

sin 100

  c =
31 sin 100

sin 29

    = 62·97 cm (2dp)

2 A triangle ABC has sides of AB = 3, BC = 4, and angle A is 40°. Find angle C.

  
sin A

a
=

sin B
b

=
sin C

c

  
sin 40

4
=

sin C
3

    sin C =
3 sin 40

4

    sin C = 0·482

   C = 28·82
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23.4 The Ambiguous Case (SSA)

This case occurs when given two sides and a non included angle (SSA) and we want to find the unknown angle.

In this example, we want to find ∠B. The line

BC can take two positions that both satisfy the

triangle when the sides a, b and ∠A are known. 

The triangle  forms an isosceles triangle.B1CB2

C

A

a

b

c

a

B1 B2

Another way to look at this problem, is to recognise that if the unknown angle is opposite the longest side then
there will be two possible solutions, (except if the unknown angle is a right angle).

23.4.1  Example:

If  find the two triangles formed.∠A = 20°,  a = 13 cm,  b = 32 cm

C

A c

C

A

b = 32

c

a = 13
b = 32 a = 13

20° 20°
B1 B2

Solution:
To find the angles  & B1 B2

 
sin A

a
=

sin B
b

 sin B =
b sin A

a
=

32

13
 sin 20

  = 2·4615 × 0·342 = 0·8419

      B = sin
−1 0·8419

∴ B2 = 57·34° (2 dp)

     B1 = 180 − 57·34 = 122·66° (2 dp)
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23 • C2 •  Sine & Cosine Rules

23.5 Cosine Rule

The Cosine rule, for any triangle gives: 

a
2 = b

2 + c
2 − 2bc cos A

b
2 = a

2 + c
2 − 2ac cos B

c
2 = a

2 + b
2

− 2ab cos C

Note the cyclic nature of the equation:  and that the angle is the included angle.a → b → c → a

23.5.1 Cosine Rule Proof

C

A B

ab

c − x

h

C

A B

ab

c

h

Case 1 Case 2

DD xx
c

Case 1 (acute angled triangle)

 △ACD h
2 = b

2
− x

2 From

 △BCD h
2 = a

2 − (c − x)2
From

 ∴ a
2 − (c − x)2 = b

2
− x

2

 a
2 −  c2 + 2cx − x

2 = b
2

− x
2

 ∴ a
2 = b

2 +  c2 − 2cx

△ACD x = b cos AFrom 

 ∴ a
2 = b

2 +  c2 − 2bc cos A

 Similarly:

 b
2 = a

2 + c
2 − 2ac cos B

 c
2 = a

2 + b
2

− 2ab cos C

Case 2 (obtuse angled triangle)

 △BCD h
2 = a

2 − (c + x)2
From

 △ACD h
2 = b

2
− x

2From

 ∴ a
2 − (c + x)2 = b

2
− x

2

  a2 − c
2 − 2cx − x

2 = b
2

− x
2

 ∴ a
2 = b

2 + c
2 + 2cx

△ACD x = b cos (180° − A)From 

     = −b cos A

∴ a
2 = b

2 + c
2 − 2bc cos A

 Similarly:

 b
2 = a

2 + c
2 − 2ac cos B

 c
2 = a

2 + b
2

− 2ab cos C
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23.5.2  Example:

1 Refer to the diagram and find the shortest

distance between point A and the line BD. 

Find the distance AD.

300km

60°

A

B C D300km

75°

Solution:
To find the shortest distance between point A and the line BD, draw a line from A to BD,
perpendicular to BD. Then find the length of AB, for which you need the angle ∠BAC. Then it is a
matter of using the definition of a sine angle to work out the length of the perpendicular line.

 ∠BAC = 180 − (60 + 75) = 45

To find AB, have AAS which needs the sine rule:

  
a

sin A
=

b

sin B
=

c

sin C

  
300

sin 45
=

c

sin 75

  c =
300 sin 75

sin 45

  c = 288·28 km

Draw a line from A to BD at point R

  sin 60 = =
AR

c

opposite

hypotenuse

  AR = c sin 60 = 288·28 sin 60

   = 249·66 km

Look at the triangle ABD and calculate AD from the cosine rule (SAS)

 b
2 = a

2 + d
2

− 2ad cos B

    = 288·28
2 + 600

2
− 2 × 288·28 × 600 cos 60

 b
2 = 270137·35

∴      b = 519·74 km

600km

60°

A

B DR

oecfrl
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2 From the diagram, find length BD and

∠BAD

20

45°

A

B C

D

58°12

25
b1 b2

d1

d2

Solution:
To find the length BD, we have AAS therefore use the sine rule:

 
20

sin 45
=

c

sin 58

  c =
20 sin 58

sin 45

  c = 23·98

To find  ∠BAD use the cosine rule (SSS)

 cos A =
b1

2 + d1
2 − a2 

2b1 d1

  =
252 + 122 − 23·982 

2 × 25 × 12

  = 0·323

       A = cos
−1 (0·323)

  = 71·14°
oecfrl
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23.6 Bearings

Bearing problems are a favourite topic. You need to be familiar with the rules for angles and parallel lines. Also
note that compass bearings are measured clockwise from North.

23.6.1  Example:

1 A microlight flies on a triangular cross county
course, from A to B to C and back to A for tea.

Show that ∠ABC is 95°, and find the distance
from C to A.

N

N

25km
37km

N

120°

35°

A

B

C

Solution:
∠ABC can be split into two parts, and from the rules for parallel lines & angles on a straight line:

 ∠ABC = 35 + 90 = 95°

As we now have two sides and an included angle (SAS), we use the cosine rule.

 b
2 = a

2 + c
2 − 2ac cos B

 b
2 = 372 + 25

2
− 2 × 37 × 25 × cos 95

 b
2 = 1994 − 1850 × (−0·0872)

 b
2 = 1994 + 161·238

 b = 2155·238

 b = 46·424

∠BCANow find the bearing required, by finding 

 
sin B

b
=

sin C
c

 
sin 95

46·424
=

sin C
25

 sin C =
sin 95

46·424
× 25

  = 0·5365

      C = sin
−1 (0·5365) = 32·44°

 = 360 − (60 + 32·44) = 267·55°Bearing from C to A
oecfrl
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23.7 Area of a Triangle

From previous studies recall that the area of a triangle is given by:

 Area =
1

2
 base × perpendicular height

 A =
1

2
 b h

base

ht

A

B

C

a

b

c

From the trig rules, we know that the height, h,  is given by

    sin A =
opp

hypotenuse
=

h

c

     h = c sin A

Hence:

    Area =
1

2
bc sin A

Similarly for the other angles:

    Area =
1

2
ac sin B =

1

2
ab sin C

where the angle is always the included angle.

There are other formulae for the area of a triangle, such as:

 
a

sin A
=

b

sin B
From the sine rule:

       a =
b sin A
sin B

 Area =
1

2
ab sin CSubstitute into the area formula:

    Area =
1

2 (b sin A
sin B )  b sin C

    Area =
b2

2
 ×

sin A sin C
sin B

 =  
b2sin A sin C

2 sin B
 

This is great if you have a given triangle with three angles and one side.
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23.7.1  Example:

1
From the given sketch, find the area of the

triangle. Dimensions in cm.

C

A

bc = 12.5

a = 14.5

80°

B

Not to scale

Solution:

    Area =
1

2
bc sin A =

1

2
ac sin B =

1

2
ab sin C

We have been given a, & c, so we need sin B, to find the area.

Area =
1

2
ac sin B

Using the sine rules to find angle C, then angle B.

  
sin A  b

a b
=

sin B
b

=
sin C
c b

  sin C =
c sin A

a

  C = sin
−1 ( c sin A

a ) = sin
−1 ( 12.5 sin 80

14.5 )
  B = 180 − 80 − sin

−1 ( 12.5 sin 80

14.5 )
    = 100 − 58·1 = 41·9°

  Area =
1

2
ac sin B =

1

2
× 14.5 × 12.5 sin 41·9

    = 58·10 cm
2
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23.8 Cosine & Sine Rules in Diagrams

Simply put: for SAS & SSS use the cosine rule, for anything else use the Sine Rule.

Cosine Rule

SAS SSS

Sine Rule

ASA AAS

SSA SSA  ambiguous case

When to use the Sine & Cosine Rule

23.9 Heinous Howlers

Check your calculator is set to degrees or radians as appropriate.

Know the formulae for the sine rule and area of a triangle - they are not in the exam formulae book.
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23.10 Digest

Use the cosine rule whenever you have:

j Cosine Rule

j 2 sides and the included angle (SAS) − to find the unknown side

j All 3 sides (SSS) − to find the unknown angle

For all other situations use the sine rule.

To find the length of a side:

     a
2 = b

2 + c
2 − 2bc cos A

     b
2 = a

2 + c
2 − 2ac cos B

     c
2 = a

2 + b
2

− 2ab cos C

To find an angle:

     cos A =
b2 + c2 − a2

2bc

     cos B =
a2 + c2 − b2

2ac

     cos C =
a2 + b2 − c2

2ab

Use the sine rule whenever you have:

j Sine Rule

j 2 angles + 1 side (AAS or ASA) − to find the unknown side

j 2 sides + 1 opposite angle (SSA) − to find the unknown angle

j Note: if the unknown angle is opposite the longer of the two sides, then there are two possible

angles (the ambiguous case), right angles excepted.

     
a

sin A
=

b

sin B
=

c

sin C
 side unknown - use this version

     
sin A

a
=

sin B
b

=
sin C

c
 angle unknown - use this version

( i.e. put the unknown bit on top)

Recall that  always has two solutions for angles between 0 and 180°. sin x = k

   x = sin
−1

k

    x = 180° − sin
−1

kand

Area of a triangle (SAS):

   Area =
1

2
ab sin C

   Area =
1

2
ac sin B

   Area =
1

2
bc sin A 
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24.1 Definition of Radian

One radian is the angle subtended at the centre of a

circle by an arc, whose length is equal to the radius of

the circle. 

Circumference     if  then

        

Hence 

 rad

C = 2πr r = 1

C = 2π

2π radians =  360°

 180° = π  rad

   90° =
π
2

  rad

     1° =
π

180

1c

r

r

r

One radian (1c or 1 rad) = 57·296° (3dp)

Since a radian is defined by the ratio of two lengths, it

has no units. 

A circle can be divided up into 6.3 radians (approx).

To convert from degrees to radians:     rads

To convert from radians to degrees:  

× 
π

180

× (180

π )
°

1c

1c1c

1c

1c 1c

24.2 Common Angles

Some angles have conversions that lead to exact conversions between degrees and radians. 

3p
ÊÊÊÊ

 2

5p
ÊÊÊÊ

 6

3p
ÊÊÊÊ

 4

2p
ÊÊÊÊ

 3

4p
ÊÊÊÊ

 3

5p
ÊÊÊÊ

 4

7p
ÊÊÊÊ

 6

5p
ÊÊÊÊ

 3

7p
ÊÊÊÊ

 4

11p
ÊÊÊÊÊÊ

  6

p
ÊÊ

6

p
ÊÊ

4

p
ÊÊ

3

p
ÊÊ

2

p 0
 

2p

Need to know � common angles in radians
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24.3 Length of an Arc

The length of the arc L with angle θ at the centre of a
circle with radius r is:

       L  =  fraction of circle × circumference

    (  in radians)

    (  in degrees)

 L =
θ

2π
× 2πr = rθ θ

 L =
θ

360
× 2πr =

πrθ
180

θ

r

r

L

q

24.4 Area of Sector

The area of sector A is given by:

       A  =  fraction of circle × area

    (  in radians)

    (  in degrees)

 A =
θ

2π
× πr

2 =
1

2
r

2θ θ

 A =
θ

360
× πr

2 =
πr2θ
360

θ

r

r

q

24.5 Area of Segment

The area of a segment of a circle with radius r is given

by the area of the sector minus the area of the triangle:

 A  =  area of sector − area of triangle

    (  in radians)

       (

    A = 1
2r2θ − 1

2r2 sin θ θ

A = 1
2r2 (θ − sin θ) θ in radians)

r

r

q

24.6 Length of a Chord

Recall:

Length of chord: PQ = 2r sin θ2

θ in radians or degrees.

r

r

q/2

Q

q/2
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24.7 Radians, Arcs, & Sectors: Worked Examples

24.7.1  Example:

1 Find the perimeter and the area of the shaded

region, giving the answers to 3 significant

figures.

Convert the angle to radians.
140°O

9

A

B

L

Solution:
The perimeter of the shaded area is made up of the arc AB, plus the chord AB.

Convert angle to radians:

   θ = 140° ×
π

180
=

7π
9

 radians

Arc length is:

   L = rθ = 9 ×
7π
9

     = 7π

Chord length:

  AB = 2r sin 
θ
2

      = 18 sin (7π
9

×
1

2)
      = 18 sin 

7π
18

= 16·91

∴ = 7π + 16·91 = 38·91Perimeter

        = 38·9  3 sf

Area of shaded region:

   A =
1

2
r

2 (θ −  sin θ)  θ in radians

     =
81

2 (7π
9

− sin 
7π
9 )

     =
81

2
× 1·800

     = 72·93

     = 72·9 3 sf
oecfrl h/t Fritz K 
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2 The triangle ACE is an equilateral triangle, with

sides 18cm long. Find the area of the shaded

region.
9

A

C

E

9

B

D

F

9

9

Solution:
The shaded area is found by finding the area of the rhombus BCDF and subtracting the area of the
sector BDF.

Area of the rhombus BCDF:

∠BCD = 60° =
π
3

 radians

=  2 × BCDArea of rhombus Area of triangle 

  A� = 2 × (1

2
BC × CD × sin 

π
3 )

       = 9
2 sin 

π
3

=
81 3

2
≈ 70·15

  AC =
1

2
FD

2 ×
π
3

=
π
6

 FD
2Area of the sector BDF:

         =
π
6

× 9
2 =

81π
6

=
27π

2

  AS =
81 3

2
−

27π
2

Area of the shaded region:

           ≈ 27·74 cm
2

oecfrl

3 The triangles ABD and BCD are equilateral

triangles, with sides 12 cm long. The triangles

are set within two sectors centred on points B &

D. 

Find the area of the shaded region.

A B

C
D

12

12

12

12

Solution:
The shaded area is found by finding the area of the two sectors ABC & ADC and subtracting the
area of the rhombus ABCD.

Area of the rhombus ABCD:

=  2 × ABDArea of rhombus Area of triangle 

  A� = 2 × (1

2
AB × AD × sin 

π
3 ) = AB × AD × sin 

π
3

       = 12
2 sin 

π
3

=
144 3

2
= 72 3 ≈ 124·71
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  AC =
1

2
DB

2 ×
2π
3

=
π
3

 DB
2Area of the sector ABC:

         =
π
3

× 144 =
144π

3
= 48π

  AS = 2 × 48π − 72 3Area of the shaded region:

        AS = 96π − 72 3

            ≈ 176·89 cm
2

4 Find an expression that gives the area of the

shaded part of the diagram.

Radius: AC & CB = r

Lines AP & BP are tangent to the circle.

∠ACB = θ
P

B

C

A

θ

r t

tr

Solution:
The shaded area is found by finding the area of the kite ACBP, and subtracting the area of the
sector ABC.

Area of the kite ACBP:

=  2 × ACPArea of kite Area of triangle 

  A� = 2 × (1

2
AC × AP) = AC × AP = rt

 tan 
θ
2

=
t

r
 ⇒  t = r tan 

θ
2

but:

 ∴    A� = r
2 tan 

θ
2

  AC =
1

2
r

2θArea of the sector ABC:

  AS = r
2 tan 

θ
2

−
1

2
r

2θArea of the shaded area:

        = r
2 ( tan 

θ
2

−
θ
2 )
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24.8 Topical Tips

j If the question asks for an exact answer, leave the answer in terms of a surd or .π

j Radians should be used at all times when dealing with the derivative and integral calculus

24.9 Common Trig Values in Radians

Exact equivalent of common trig values in radians.

Degrees 0 30 45 60 90 180 270 360

Radians 0 π
6

π
4

π
3

π
2 π 3π

2 2π

sin 0 1
2

1
2

3
2 1 0 −1 0

cos 1 3
2

1
2

1
2 0 −1 0 1

tan 0 1
3

1 3 AT 0 AT 0

24.10 Radians, Arcs, & Sectors Digest

  180° = π radians

  = rθ           L =
πrθ
180

 (θ )Arc length in degrees

  = 2r sin 
θ
2

   (θ )Length of chord in degreeas or radians

  = ½ r2θ    (θ )     A =
πr2θ
360

 (θ )Area of sector in radians in degrees

  = ½ r2 (θ − sin θ)  (θ )Area of segment in degreeas or radians
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25.1 Basics Logs

Logs are exponents!

The logarithm of a number, N, is the exponent or power to which a base number must be raised to produce that
number.

   8 = 2
3 (base 2)    16 = 4

2 (base 4)Thus: 

      log2 8 = 3      log4 16 = 2

In simpler terms, what we are really asking is the question “How many times do we have to multiply the base
number by itself to get our number N.” The logarithm tells you what the exponent, power or index is.

In algebraic terms:

 N = b
x  logb N = x b > 0;  b ≠ 1If: then true if   

The constant b is the “base” and the exponent, x, is the logarithm, ‘index’ or ‘power’. 

N = bx   ë   logb N = x

Base

A Number
Exponent or Index

N = bx

logb N = x

The Logarithm,

where b > 0

The Log Definition: remember this relationship.

Note that:

 b = b
1   logb b = 1as:   then

 b
0 = 1   logb 1 = 0and: then

  logb x = logb y       x = yif then

Note the restriction that the base, b, has to be a positive number and greater that zero. You can’t evaluate an
equation like    for all values of x.y = (−3)x

If  then  increases as x increases for all values of x.b > 1 N = bx

If  then  decreases as x increases for all values of x.0 < b < 1 N = bx

N is always +ve, as the log does not exist for −ve values.

However, the exponent or logarithm can be negative, and this implies division rather that multiplication.

The log function can also be defined as the inverse of an exponential function (see later).
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25.2 Uses for Logs

Logs are a great way to reduce a large number to a smaller number, which can then be used for comparison
purposes. 

Hence logs to base 10 are often used for:

j Earthquake intensity scale (Richter scale)

j Sound intensity scale (decibel scale dB)

j Musical scales

j Measurement of pH [log10 (1/concentration of H+ ions)]

j Radioactive decay

j Financial investment calculations

j Population growth studies

j Log graph paper with the x and/or y axes with log scales (turns an exponential curve into a straight

line)

25.3 Common Logs

Common Logs use the base 10, and are very common in Engineering.

Logs to base 10 were used before the days of calculators to handle long multiplication & division, powers, and
roots. The old slide rules are based on log scales.

Normally written without the base e.g. log 67·89 ≡ log10 67·89

       log10 1000 = 3       ≡ 10
3

Thus:

   log10 100 = 2  ≡ 10
2

   log10 10 = 1    ≡ 10
1

   log10 1 = 0      ≡ 10
0

   log10 0·1 = 0   ≡ 10
−1

   log10 0·01 = 0        ≡ 10
−2

   log10 0·001 = 0      ≡ 10
−3

   
   

  log10 67·89 = 1·8318  ≡ 10
1.8318

and:

   log10 6·789 = 0·8318  ≡ 10
0·8318

   log10 0·6789 = −1·8318    ≡ 10
−1·8318

   log10 0·06789 = −2·8318  ≡ 10
−2·8318

25.4 Natural Logs

Natural logs, sometimes called Naperian logs, have a base of e (Euler’s Number) and are written ln to distinguish
them from common logs. You must use natural logs in calculus, hence mathematicians tend to use natural logs.

The value e is found in many scientific & natural processes. It is an irrational number (you cannot turn it into a
fraction!)

      e = 2·7182818…

  ln 1 = 0 & ln e = 1Note:

More in the next section...
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25.5 Log Rules - OK

loga (MN) = loga M + loga N (1)

Proof:

    a
x = M ⇔  loga M = xBy defn:

    a
y = N ⇔  loga N = y By defn:

    MN = a
x × a

y = a
(x + y)Power Law À

            loga (MN) = (x + y)

         = loga M + loga N     QED

Similarly:

loga (M

N ) = loga M − loga N (2)

    a
x = M ⇔  loga M = xBy defn:

    a
y = N ⇔  loga N = y By defn:

       
M

N
=

ax

ay = a
(x − y)Power Law Á

        loga (M

N ) = x − y

          = loga M − loga N     QED

From this rule we see:

    loga ( 1

N ) = loga 1 − loga N = 0 − loga N

 ∴       loga ( 1

N ) = −loga N

Also:

loga (M)r = rloga M (3)

    a
x = M ⇔  loga M = xBy defn:

    Mr = (ax)r
= a

rxPower Law Â

     loga (M)r = rx

       = r loga M        QED

From this last rule we see that:

    loga 
n

M = loga (M)
1
n =

1

n
loga M

loga 
n

M =
1

n
loga M

loga (M

N ) = −loga ( N

M)
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25.6 Log Rules Revision

Log rules work for any base, provided the same base is used throughout the calculation.

Any base used must be > 1.

The second and third log rules can be derived from the first rule thus:

   loga M + loga N = loga (MN) (1)

       loga 
1

N
= −loga NBut

   loga M + loga 
1

N
= loga M − loga N = loga (M

N ) (2)

 M = NAssume

   loga N + loga N = 2loga N = loga (N2)
 rloga M = loga (M)r (3)In general: 

Equating indices

Note that in the same way as   then similarly if 58x = 54 ⇒ 8x = 4 log 8n = log 4 ⇒ 8n = 4

25.7 Change of Base

Nearly all log calculations are either log to base 10 or log to base e. Some engineering calculations are to base 2.

In general, try not to mix the bases in any calculation, but if a change of base is required use:

loga N =
logb N
logb a

(4)

25.7.1  Example:

Find  :log2 128

   log2 128 =
log10 128

log10 2

   log2 128 =
2·1072

0·3010
= 7

(OK - you can do this directly on your calculator, but it illustrates the technique)

If you want to use a factor to change bases, choose a base and number that reduce to 1 for the denominator.

25.7.2  Example:

Find a factor to convert base 6 logs to base 10.

   
log610

log1010
=

log610

1
= 1·285

  log6 N = 1·285 log10 Nhence

Hence:

  loga b =
logb b
logb a

=
1

logb a
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25.8 Worked Examples in Logs of the form ax = b

25.8.1  Example:

1 Find x if: 32x + 1 = 5100

Take logs (base 10) both sides: (Resist the temptation to take logs to base 3 on one side and logs to
base 5 on the other, which will give you a change of base to do).

   log 32x + 1 = log 5100

   (2x + 1) log 3 = 100 log 5

   2x + 1 =
100 log 5

log 3

   2x =
100 log 5

log 3
− 1

   2x =
100 log 5

log 3
− 1 =

100 × 0·699

0·477
− 1

     x =
145·53

2
= 72·77 (2dp)

2 A curve has the equation . A point Q, on the line has a value of  .y = (1
2)x y = 1

6

Show that the x-co-ordinate of Q has the form: 1 + log 3
log 2

 y =
1

6
= (1

2)
x

At point Q:

    
1

6
=

1

2x

    6 = 2
x

 log 6 = log 2x
Take logs

      = x log 2

∴       x =
log 6
log 2

    x =
log (2 × 3)

log 2
=

log 2 + log 3
log 2

∴       x = 1 +
log 3
log 2

3 Given that: , show that , and state the values of p and q.y = 5 × 103x x = p log10 (qy)

Solution:

 y = 5 × 10
3x

 
y

5
= 10

3x

 log (y

5) = 3x

      x =
1

3
log (y

5)
∴ p =

1

3
 q =

1

5
oecfrl

209



My A Level Maths Notes

4 Given that: , solve for x.y = 63x y = 84and 

Method 1

 6
3x = 84

 log 63x =  log 84

 3x log 6 =  log 84

    3x =
log 84

log 6

     x =
log 84

3 log 6

     x = 0·824 (3sf)

Method 2

 6
3x = 84

 3x = log6 84

   x =
log6 84

3

   x = 0·824 (3sf)

5 Solve: 32x + 1 − 14 (3x) − 5 = 0

Solution:
Recognise that: a2x = (ax)2

  3
2x (3) − 14 (3x) − 5 = 0

  (3x)2
(3) − 14 (3x) − 5 = 0

  3 (3x)2
− 14 (3x) − 5 = 0

3
x ∴  z = 3

x
This is a quadratic in let

  3 (z)2
− 14 z − 5 = 0

  (3z + 1) (z − 5) = 0

∴  z = −
1

3
 or z = 5

3
x 3

x = 5 :But cannot be −ve, hence 

  log 3x = log 5

  x log 3 = log 5

∴ x =
log 5
log 3

= 1·46 3sf
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25.9 Inverse Log Operations

25.9.1 First Investigation

From our basic definition 

N = b
x ⇔  logb N = x

we note that the process is reversible, i.e. this is an inverse function.

If we substitute various numerical values for x, we derive the following:

 x = 0 N = b
0 ⇒  N = 1 ∴ logb 1 = 0If then 

 x = 1 N = b
1 ⇒  N = b ∴ logb b = 1If then 

 x = 2 N = b
2 ⇒         ∴ logb b

2 = 2If then 

 x = n N = b
n ⇒         ∴ logb b

n = nIf then 

                  ∴ logb bx = x

logb N  x  N = b
x

Reversing the definitions and substituting for in

        x = logb N ⇔  b
x = N      ∴ b

logb N = N

As these are true for any value of x, then we have these identities:

logb bx ≡ x  b
logb N ≡ N  N > 0,  x ∈  and R

(   log10 10 = 1 & ln e = 1Hence we find:

25.9.2 Second Investigation

from our basic definition 

(1)  N = b
x ⇔  logb N = x (2)

       logb bx = x      Substitute (1) into (2) (first proof)

≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

       b
x = NNow from (1)

    logb (bx) = logb NTake logs both sides

 logb N = x    ∴ logb b
x = x      But (second proof)

≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

       b
x = NNow from (1)

 x = logb N    ∴   blogb N = N      But (third proof)
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These results are very useful in solving log problems. Some examples will help clarify things:

25.9.3  Example:

1 Take  and take logs to base e. From the log rules we have:ex

ln ex = x ln e

ln e = 1 ∴ ln ex = xbut: 

In general:

y =  ex ⇔  ln y = x

∴ y = e
ln y

∴ y
a = (eln y)a

= e
a ln y

2 Take the number 128 and take logs to base 2.

       log2 128

 2
log2 128

Raise the base 2 to the log of 128:

 128 = 2
7 ∴ 2

log2 128 = 2
log2 27

But:

 ∴ 2
log2 128 = 2

7 × log2 2
From the log rules:

   log2 2 = 1   2
log2 128 = 2

7 = 128But:

Raising a base number to the log of another number, using the same base, results in the same
number being generated. Hence this is called an inverse operation.

  a
loga m = mIn general:

3 Given that:

2 log10 (x

y) = 1 +  log10 (10x
2
y)

Find y to 3 dp.

2 ( log10 x −  log10 y) = 1 +  log10 10 +  log10 x
2 +  log10 y

2 log10 x −  2 log10 y = 1 + 1 + 2 log10 x +  log10 y

−log10 y −  2 log10 y = 2

3 log10 y = −2

   log10 y = −
2

3

y = 10
−2

3 = 0·215
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25.10 Further Worked Examples in Logs

25.10.1  Example:

1 Find the value of y, given that:

 3log (x

y) = 2 + log (10x
3
y)

Answer to 3 dp.

Solution:

 3 (log x − log y) = 2 + log 10 + 3log x + log y

 3log x − 3log y = 2 + log 10 + 3log x + log y

 − 3log y = 2 + 1 + log y

 − 4log y = 3

 log y = −
3

4

  y = 10
−3

4

  y = 1·778
oecfrl

2 Evaluate:

 log510 + log575 + log52 − log512

Solution:
 

 y = log510 + log575 + log52 − log512Let

  y = log5
10 × 75 × 2

12

  y = log5125

  5
y = 125

  y = 3
oecfrl

3 Solve 10p = 0·1

Solution:

 10
 p = 0·1

 p = log10 0·1

 p = −1

or:

 10
 p = 0·1

 log10
 p =  log 0·1

 p log10 =  log 0·1

log10 10 = 1but:    

∴   p × 1 =  log 0·1

   p = −1
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4 Simplify:

  
log 1 − log 16

log 1 − log 2

Solution:

  
log 1 − log 16

log 1 − log 2
=

0 − log 16

0 − log 2
 1 = 10

0
since 

      =
log (2 × 8)

log 2

      =
log 2 + log 8

log 2

      = 1 +
log 8
log 2

= 1 + 3

      = 4

5 Solve: 32x + 1 − 14 (3x) − 5 = 0

Solution:
Recognise that: a2x = (ax)2

  3
2x (3) − 14 (3x) − 5 = 0

  (3x)2
(3) − 14 (3x) − 5 = 0

  3 (3x)2
− 14 (3x) − 5 = 0

3
x ∴  z = 3

x
This is a quadratic in let

  3 (z)2
− 14 z − 5 = 0

  (3z + 1) (z − 5) = 0

∴  z = −
1

3
 or z = 5

3
x 3

x = 5 :But cannot be −ve, hence 

  log 3x = log 5

  x log 3 = log 5

∴ x =
log 5
log 3

= 1·46 3sf

6 Given that , show that 2 log n − log (8n − 24) = log 2 n2 − 16n + 48 = 0

Solution:

  2 log n − log (8n − 24) = log 2

  log n2 − log (8n − 24) = log 2

  log 
n2

(8n − 24)
= log 2

∴     
n2

(8n − 24)
=  2

∴     n2 − 16n + 48 = 0
EAFQLA
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7 Given that  and that log2 q = h p = ½

 log2 
p4

q
 hexpress: in terms of 

Solution:
 

  log2 
p4

q
= log2 p

4 − log2 q

    = 4 log2 p −
1

2
 log2 q

    = 4 log2 
1

2
−

1

2
 h

    = 4 (log2 1 − log2 2) −
1

2
 h

    = 4 (0 − 1) −
1

2
 h

    = − 4 −
1

2
 h

eedfxl

8 Find the roots of the equation: 2 log2 (2x + 3) + log2 (x) − 3 log2 (2x) = 1

Solution:
Now recognise that log2 2 = 1

 2 log2 (2x + 3) + log2 (x) − 3 log2 (2x) = log2 2Hence:

Converting back to index form:

   
(2x + 3)2 x

(2x)3
= 2

   
(2x + 3)2

8x2
= 2

   (2x + 3)2 = 16x
2

   4x
2 + 12x + 9 = 16x

2

   − 12x
2 + 12x + 9 = 0    (−3)Divide thro' by

   4x
2 − 4x − 3 = 0

  (2x + 1) (2x − 3) = 0

  ∴ x = −
1

2
  or x =

3

2

9 A curve has the equation . Point P lies on the curve. P has the co-ordinates:y = 3 log10x − log10 8
P = (3,  log10 [27

8 ])
The point Q (6, q) also lies on the curve, show that the gradient of PQ is log10 2

Solution:

x = 6 y = log 
63

8
⇒ log 

216

8
= log 27At 

=
y1 − y1

x1 − x2

=
log 27 − log (27

8 )
6 − 3

=
log 27 − (log 27 − log 8)

3
gradient

       =
log 8

3
= log 8

1
3 = log 2
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10 Solve the inequality:

0·5776
x ≤ 0·76

Solution:

   0·5776
x ≤ 0·76

   x log (0·5776) ≤ log (0·76)

But a log of a number < 1 is −ve

   x ≥
log (0·76)

log (0·5776)
= 0·5   Hence: (Note the change in the inequality sign)

−2 −1 0 1 2 3

1

2

y = 0.5776 x

x

y

0.5

0.76

25.11 Use of Logs in Practice

As was noted at the beginning of this section, logs are used in a number of different fields, such as:

The Richter Scale, M:

M =
2

3
 log 

E

E0

 E0 = 10
4.40 jouleswhere 

where E is the energy released by an earthquake, and E0 is the energy released by a standard reference
earthquake.

Sound decibel scale (dB):

dB = 10 log (p × 10
12)   p =  where sound pressure

pH scale:

pH = −log [H
+]   [H

+] =  where concentration of H ions (moles/L)
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25.12 Heinous Howlers

Don’t make up your own rules! 

j  is not the same as .  Study the above table and you’ll find that there’s nothing
you can do to split up  or .
log (x + y) log x + log y

log (x + y) log (x − y)

j   is not the same as . When you divide two logs to the same base, you are in fact using the

change-of-base formula backwards. Note that  , NOT !

log (x)
log (y) log (x

y)
log (x)
log (y) = logy (x) log (x

y)
j  is not the same as . There’s really not much you can do with the product of two

logs when they have the same base.

(log x) (log y) log (xy)

Handling logs causes many problems, here are a few to avoid.

1 ln (y + 2) = ln (4x − 5) + ln 3

 (y + 2) ≠ (4x − 5) +  3 You cannot just remove all the ln’s so: c

 To solve, put the RHS into the form of a single log first:

      ln (y + 2) = ln [3 (4x − 5)]     b

 ∴     (y + 2) = 3 (4x − 5)

2 ln (y + 2) = 2 ln x

 (y + 2) ≠ 2x You cannot just remove all the ln’s so: c

 To solve, put the RHS into the form of a single log first:

     ln (y + 2) = ln x2      b

 ∴    (y + 2) = x
2

3 ln (y + 2) = x
2 + 3x

    (y + 2) ≠ e
x2

+ e
3x     You cannot convert to exponential form this way: c

         (y + 2) = e
x2 + 3x  To solve, raise e to the whole of the RHS :  b
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25.13 Log Rules Digest

logb 1 = 0

logb b = 1

∴ log10 10 = 1 & ln e = 1

logb bn = n

∴ log10 10
n = n & ln en = n

Laws of  Exponents Laws of  Logarithms

N = bx logb N = x b > 0

b0 = 1 logb 1 = 0

b1 = b logb b = 1

aman = a(m + n) loga (MN) = loga M + loga N

am

an
= a(m − n) loga (M

N ) = loga M − loga N

1

an
= a(−n) loga ( 1

N ) = −loga N

n
m = m

1
n loga n M =

1

n
 loga M

(am)n = a(mn) loga Mn = n loga M

(am)
1
n = a

(m
n )

loga M
1
n = 1

n  loga M

Change of  base ⇒ loga N =
logb N
logb a

loga b =
1

logb a

a

b
= (b

a)−1
ln

a

b
= −ln

b

a

a
logam = m

a
logax = x loga (ax) = x

10log N = N log (10x ) = x

eln x = x ln ex = x

ea ln x = xa a ln ex = ax ∗

Note:

log x ≡ log10 x & ln x ≡ loge x
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26.1 General Exponential Functions

An exponential function has the form:

  ƒ (x) = b
x  y = b

x b > 0,  b ≠ 1or where b is the base and 

Note that the power of the number is the variable x. The power is also called the exponent - hence the name
exponential function.

E.g.  are all exponentials.3x,  4.5x,  5x

Exponential functions have the following properties:

j The value of b is restricted to  and b > 0 b ≠ 1

j Note that when ,  , and when , , hence the restrictions abovea = 0 bx = 0 b = 1 bx = 1

j The function is not defined for negative values of b. (e.g.  )−10·5 = −1

j All exponential graphs have similar shapes

j All graphs of  and  pass through co-ordinates (0, 1)y = bx y = b−x

j Graphs pass through the point (1, b), where b is the base

j The larger the value of b, the steeper the curve

j Graphs with a negative exponent are reflections of the positive ones, being reflected in the y-axis 

j For  and +ve x, the gradient is always increasing and we have exponential growth
For  and −ve x, the gradient is always decreasing and we have exponential decay
For  and +ve x, the gradient is always decreasing and we have exponential decay

b > 1
b > 1
0 < b < 1

j The x-axis of a exponential graph is an asymptote to the curve hence:

j The value of y never reaches zero and is always positive

j For exponential graphs, the gradient divided by its y value is a constant

j Recall that , for +ve values of b, and that b0 = 1 b
−3 ≡

1

b3

26.2 The Exponential Function: e

Whereas  is an exponential function, there is one special case which we call THE exponential function.ax

By adjusting the value of the base b, we can make the gradient at the co-ordinate (0, 1) anything we want. If the
gradient at (0, 1) is adjusted to 1 then our base, b, is found to be  2·71828…

The function is then written as:

y = e
x e = 2·718281828 (9 dp)where 

Like the number for , e is an irrational number and never repeats, even though the first few digits may look as
though they make a recurring pattern.

π

THE exponential function can also be found from the exponential series:

e
x = 1 + x +

x2

2
+

x3

6
+… + 

xn

n!
+…

To find the value of e, set :x = 1

e = 1 + 1 +
1

2
+

1

6
+… + 

1

n!
+…

In exponential graphs, the gradient divided by the y value (dy/dx ÷ y) is a constant. For ex this value is 1, and we

find that the gradient at any point is equal to y. Hence .
dy
dx

= ex
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26.3 Exponential Graphs

2.01.51.00.50.0−0.5−1.0

1

2

3

4

5

6

7

8

y=10x

y=ex

y=2x

y=3x

1.00.50.0−0.5−1.0

1

2

3

4

5

6

7

8

y=10−x

y=e−x

y=2−x

y=3−x

−1.5−2.0

y y

xx

b > 1

y = b−x y = bx

Properties of Exponential graphs:

j Graphs shown are for  and , all with  y = bx y = b−x b > 1,  b ≠ 1

j Continuous for all real numbers

j No sharp corners

j All graphs pass through point (0, 1) and have similar shapes (y = b0 = 1)

j For +ve values of x, graphs pass through point (1, b), where b is the base

j For −ve values of x, graphs pass through point (−1, b)

j The negative exponential graphs are reflections of the positive ones, being reflected in the y-axis 

j The larger the value of b, the steeper the curve

j For  Gradient increases as x increases,  (positive values of x)
   i.e. the rate of change increases (exponential growth)

b > 1 :

j For  Gradient decreases as x increases, (positive values of x)
            i.e. the rate of change decreases (exponential decay)

0 < b < 1 : 0 < b < 1

j The x-axis of a exponential graph is an asymptote to the curve hence:

The value of y never reaches zero and is always positive so the curve lies above the x-axis

j Graph intersects any horizontal line only once, hence it is a one-to-one function. This means it has an
inverse, the log function.

j For exponential graphs, the gradient divided by its y value is a constant

          For y = bx

   x → +∞ ⇒ y → +∞

   x → −∞ ⇒ y → 0

           For y = b−x

   x → +∞ ⇒ y → 0

   x → −∞ ⇒ y → +∞
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For +ve values of , similar graphs are drawn, but these represent decay curves. Note how the curves get
steeper as b gets smaller. A negative value of x will produce reflected images in the y-axis (not shown).

b < 1

−5 −4 −3 −2 −1 0 1 2 3 4

1

2

3

4

y = 0.2x

y = 0.5x

y = 0.8x

x

y

0.5

0.2

0 < b < 1

y = bx

These graphs follow from the law of indices:

   y = 2
−x =

1

2x
= (1

2)
x

= 0·5
x

e.g.

   y = 0·2
x = ( 2

10)
x

= (1

5)
x

=
1

5x
= 5

−x

Note that the scales on the these exponential graphs are different.

26.4 Translating the Exponential Function

In mapping an exponential function remember that for  the x-axis is an asymptote for the function. So
when translating  to , then the asymptote is also translated by the same amount, to .

y = ax

y = ax y = ax + c y = c

26.4.1  Example:

Map  to 

The translation vector is   

Note the asymptote drawn has moved to 

                  ~~~—~~~

Map  to 

This curve is a reflected image in the x-axis.
Note the asymptote in this case does not move.

y = ex y = ex + 2.

( )0

2

y = 2

y = ex y = −ex

2.01.51.00.50.0-0.5-1.0

1

2

3

4

5

6

7

y = ex + 2
y

x

y = f(x) + 2

y = ex

y = f(x)

−1
y = −ex

y = −f(x)
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26.5 The Log Function Graphs

2 3 4 5 6 7 8 9 10 11

-4

-3

-2

-1

0

1

2

3

e x

y

y = log2 x

y = ln x

y = log3 x

y = log10 x

y = logb x

b > 0
y = log0.5 x

y = log1 x

1

Graphs of the Log Family

Properties of Log graphs:

j Graphs for f (x) = logb x b > 1,  b ≠ 1

j Continuous in its domain of (0, ∞) Range is (− ∞, ∞)

j No sharp corners

j Crosses the x-axis at the point (1, 0)

j Passes through point (b, 1) where b is the base

j All have similar shapes

j Valid only for x > 0

j For  Graph increases as x increases,  

    The smaller the value of b, the steeper the curve

b > 1 : b > 1

j For  Graph decreases as x increases, 0 < b < 1 : 0 < b < 1

j As x increases, the gradient decreases.

j The y-axis of a log graph is an asymptote to the curve hence:

The value of x never reaches zero and is always positive, so the curve lies to the right of the y-axis

j Graph intersects any horizontal line only once, hence it is a one-to-one function. 

This means it has an inverse, the exponential function.
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26.6 Exponentials and Logs

The functions  and  are inverse functions, i.e. the processes are reversible — one undoes the
other. 

y = bx y = logb x

y = 3
x ⇔ x = log3 y

As with other inverse functions, these two functions, when plotted, are reflection of each other in the line . y = x

The exponential function,  is the basis for natural logs, written  or .y = ex loge ln

The domain of  is  and the range is . y = ex x ∈ R y > 0

Hence the domain of  is  with a range of .y = ln x x > 0 y ∈ R

We also find that:

b
x = e

x ln b

x

y

1y = ex

y = ln(x)

1

y = x

26.7 Exponential and Log Worked Examples

26.7.1  Example:

1 Two curves intersect at a point P. Curve A is given by , and curve B is 
. Show that the equation for the x-coordinate at point P is 

y = ax, a > 1
y = 5bx,  0 < b < 1 x = 1

log5 a − log5 b

Solution:

5b
x = a

x

log55 + log5 b
x = log5 a

x

1 + xlog5 b = xlog5 a

xlog5 a − xlog5 b = 1

x (log5 a − log5 b) = 1

x =
1

log5 a − log5 b
oecfrl

223



My A Level Maths Notes

2 The curve  has a coordinate of . Find the x-coordinate.y = (1
a)x y = (1

b)
Solution:

  (1

a)
x

=
1

b

 log (1

a)
x

= log 
1

b

 x (log 1 − log a) = log 1 − log b 

log 1 = 0but 

 − x log a = −log b 

  x =
log b 
log a

a = 4 & b = 8  x = 1 +
log 2 
log 4

If show that

  x =
log 8 
log 4

  x =
log (4 × 2)  

log 4
=

log 4 + log 2 
log 4

  x = 1 +
log 2 
log 4

oecfrl

3 Solve log5 (5x + 10) − log5x = 2

Solution:

  log5 (5x + 10) − log5x = 2

  log5 
(5x + 10)

x
= 2

   
(5x + 10)

x
= 5

2

   5x + 10 = 25x

   5x − 25x = −10

    20x = 10

    x =
1

2
oecfrl
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27.1 What is a Sequence?

A sequence or number pattern is a set of numbers, in a particular order, which follow a certain rule and creates
a pattern.

E.g. 2, 4, 6, 8, 10, �…

j Each number in the sequence is called a term, and is usually separated by a comma.

j Terms next to each other are referred to as adjacent terms or consecutive terms.

j Each term is related to the previous term either by a ‘term−to−term’ rule or a ‘position−to−term’ rule,
or sometimes both.

j Every term in the sequence has a term or pattern number to show its position in the sequence. The -th
term is a general expression which means the value of a term at any position in the sequence.

n

j Note that the symbol ‘ ’ means that the sequence continues on and on and  :-)… …

j Sequences can be infinite,  e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
or finite, e.g. 2, 5, 8, 10, 16  (where, in this example, 25 is the last term in the sequence).

…
… ,  25

j A sequence can be defined in two ways:

j as a recurrence relationship, that depends on the preceding term or

j as an algebraic relationship that gives the -th term directly.n

j Sequences can be either:

j Divergent

j Convergent

j Periodic

27.1.2  Example:

Term position 1st 2nd 3rd 4th  th … n …
Sequence  2,  4,  6,  8,  , … x …

27.2 Recurrence Relationship

A recurrence relationship (also called an iterative formula or recursive definition) defines each term in the
sequence by reference to the previous term. At least one term, usually the first term, should be specified.

E.g. The triangle numbers are:

1,  3,  6,  10,  15

The recursive definition of this sequence is given by:

U n = U n − 1 + n (  U 1 = 1)where

Recurrence relations can be used to represent mathematical functions or sequences that cannot be easily
represented non-recursively. An example is the Fibanocci sequence.

E.g. Fibanocci sequence:

1,  1,  2,  3,  5,  8,  13,  21…

The recursive definition is:

U n = U n − 1 + U n − 2
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27.3 Algebraic Definition

An algebraic relationship defines the -th term directly. There is no need to know the first term to find the -th
term.

n n

E.g. The triangle numbers are:

1,  3,  6,  10,  15

The algebraic definition of this sequence is given by:

U n =
n (n + 1)

2

27.4 Sequence Behaviour

27.4.1 Convergent Sequences

A sequence whose terms converge on some finite value, which we call the limit, L. 

The sequence never quit reaches the limit, but gets exceedingly close to it.

We say that the sequence is convergent when:

U n → L  n → ∞as

E.g.
U n = 3 +

1

n

4,  3 1/2 ,  3 1/3 ,  3 1/4 , … → 3

n → ∞
 (3 +

1

n) = 3lim

As n becomes very large.  becomes vanishing small and the sequence
tends to 3.

1
n

A sequence may also oscillate and converge to a limit.

E.g.
U n = (−1

3)
n

−
1

3
,  

1

9
, −

1

27
,  

1

81
, … → 0

n → ∞
 (−1

3)
n

= 0lim
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27.4.2 Divergent Sequences

A sequence with terms that progressively become larger (more positive or more negative) without limit, and tend
towards infinity.

We say that the sequence is divergent when:

U n → ± ∞  n → ∞as

E.g. U n = 3n + 1

4,  7,  10,  13, … → ∞

A sequence may oscillate and diverge without limit.

E.g. U n = 2 (−2)n

−4,  8, −16,  32, −64, … → ∞

27.4.3 Periodic Sequences

A periodic sequence regularly repeat themselves and as such neither converge or diverge.

U n + p = U n (where the period p is the smallest value to be true)

E.g. U n = 3 + (−1)n

2,  4,  2,  4,  2,  4, …

Period = 2 (repeats every 2 terms)

E.g.
U n = sin (nπ

2 )
1,  0, − 1,  0,  1, − 1,  0,  1…

Period = 4 (repeats every 4 terms)
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27.5 Worked Example

27.5.1  Example:

1 A sequence is defined by the following recurrence relation:

 U n − 1 = qU n + r

 U 1 = 700,  U 2 = 300,  U 3 = 140

Find q & r.

The limit of the sequence is L. Find an equation to express L in terms of q & r.

Solution:
To find q & r, make a simultaneous equation from the values of U 1 to U 3

  300 = 700q + r  (1)

  140 = 300q + r  (2)

  160 = 400q   (1) − (2)

∴  q =
160

400
= 0·4

r ∴   140 = 300 × 0·4 + r (2)Find 

    r = 140 − 120 = 20

 L = U∞ = U∞ + 1Limit 

∴     L = qL + r

  L − qL = r

  L =
r

1 − q

  L =
20

0·6
= 333 1/3

27.6 Series

A series is created when all the terms of a sequence are added together. A series can be finite or infinite. It can
also converge towards a particular value or diverge for ever.

E.g. 2 + 4 + 6 + 8 + 10…
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27.7 Sigma Notation Σ

Sigma notation is used to write down a series in a simpler form. Mathematicians don’t like having to constantly
write out the same phrase, such as ‘the sum of�’, so they use a symbol. To prove how educated they are, they use
the Greek alphabet, where  corresponds to the English letter ‘S’.Σ

The simplest example is the sum of the counting numbers:

∑
n

r = 1

r = 1 + 2 + 3 + 4 + 5 +  … +  n

where  is the term, n is the last term, and  gives the first term. This translates to “the sum of all the
numbers from 1 to n”

r r = 1

The sigma notation also allows us to specify the range of values over which the series should be added.

E.g.  ∑
6

r = 4

2
r = 2

4 + 2
5 + 2

6

27.7.2 Rules of Sigma Notation

The sigma notation can be handled according to these rules:

        ∑
n

r = 1

(ar + br) = ∑
n

r = 1

ar + ∑
n

r = 1

br

       ∑
k

r = 1

ar + ∑
n

r = k + 1

ar = ∑
n

r = 1

ar r < k < n

     ∑
n

r = 1

kar = k ∑
n

r = 1

ar

         ∑
n

1

c = nc c where is a constant

        ∑
n

1

1 = n

27.7.3 Converting a Sequence to Sigma Form

To use the Sigma form for any sequence, you just need to find an expression for the n-th term in the sequence.

27.7.3.1  Example:

Convert the sequence 6, 10, 14,  18, … to sigma form:

Solution:
This is an arithmetic sequence with a common difference of 4. The n-th term is:

     U n = 4n + 2

The sum is expressed as:

     ∑
n

n = 1

4n + 2

229



My A Level Maths Notes

27.7.4 Number of Terms in a Summation

The number of terms in a summation is given by:

− + 1Upper limit Lower limit

∑
n

r = m

⇒ n − m + 1No. of terms in sum

27.7.4.1  Example:

   ∑
10

r = 4

2
r = 2

4 + 2
5 + 2

6 + 2
7 + 2

8 + 2
9 + 2

10

   = (10 − 4) + 1 = 7Number of terms

27.7.5 Standard Sigma Results

Certain standard sums exist such as:

   ∑
n

r = 1

r =
1

2
 n (n + 1)

   ∑
n

r = 1

r
2 =

1

6
 n (n + 1) (2n + 1)

   ∑
n

r = 1

r
3 =

1

4
 n2 (n + 1)2 = 



1

2
 n (n + 1)



2

=



∑

n

r = 1

r




2

These standard results can be used to derive more complicated series.

27.7.5.1  Example:

From the standard results, find the sum of the sequence . (3n − 1)

Solution:
Using the rules above:

  ∑
n

r = 1

(3r − 1) = ∑
n

r = 1

3r − ∑
n

r = 1

1

     = 3 ∑
n

r = 1

r − ∑
n

r = 1

1

     = 3 
n (n + 1)

2
 − n

     =
3n (n + 1)

2
− n

     =
3n (n + 1)

2
−

2n

2

     =
n

2
[3 (n + 1) − 2]

     =
n

2
[3n + 3 − 2]

  ∑
n

r = 1

(3r − 1) =
n

2
[3n + 1]
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27.8 Sigma Notation: Worked Examples

1
 ∑

20

r = 1

k
2

− ∑
19

r = 2

k
2

Solve:

Solution:

   ∑
20

r = 1

k
2

− ∑
19

r = 2

k
2 = ∑

1

r = 1

k
2 + ∑

20

r = 20

k
2

           = 1 + 400 = 401

2
 ∑

n

r = 1

r =
n

2
(n + 1)Show that:

Solution:

     Sn =
n

2
[2a + (n − 1) d]The sum of terms is given by:

 ∑
n

r = 1

r = 1 + 2 + 3 + 4 +… + nNow: 

 a = 1;  d = 1Hence:

∴  ∑
n

r = 1

r =
n

2
[2a + (n − 1) d]

    =
n

2
[2 + (n − 1) ]

    =
n

2
[n + 1 ]

3
 ∑

2n

r = n + 3

r = 312  nGiven that: Find the value of 

Solution:

  ∑
2n

r = 1

r = ∑
n + 2

r = 1

r + ∑
2n

r = n + 3

rNow: 

    ∑
2n

r = n + 3

r = ∑
2n

r = 1

r − ∑
n + 2

r = 1

rHence: 

      ∑
2n

r = 1

r = n [2n + 1 ]    (From Q2 above)

     ∑
n + 2

r = 1

r =
n + 2

2
[2 + (n + 2 − 1) ] =

(n + 2) (n + 3)
2

∴      ∑
2n

r = n + 3

r = n (2n + 1) −
(n + 2) (n + 3)

2
= 312

      2 (2n
2 + n) − (n2 + 5n + 6) = 624

     3n
2 − 3n − 630 = 0

     n2 − n − 210 = (n − 15) (n + 14) = 0

∴        n = 15  (Positive integers only)
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27.9 Finding a likely rule

To find the likely rule, try some of the following ideas:

Is it a simple rule you know, like the times table?

4 8 16 32 64

x2 x2 x2 x2

…

Is the difference between each adjacent term the same? i.e. a common difference.

6 10 14 18 22

+4 +4 +4 +4

…

Is the difference between terms a changing pattern (e.g. odd numbers)?

9 12 17 24 33

+3 +5 +7 +9

…

Is it dividing (or multiplying) each term by the same number?

625 125 25 5 1

÷5 ÷5 ÷5 ÷5

…

Is it adding the previous two terms together?

2 4 6 10 16

2+4 4+6 6+10

…

Is it multiplying the previous two terms together?

2 5 10 50 500

2x5 5x10 10x50

…

Is it a pattern with alternating signs? When k is odd: . When k is even: .(−1)k = −1 (−1)k = 1

1 9 …−4 −16 25

If any of the above do not work, try finding a pattern in the first set of differences, (quadratic sequence: ).n2 + 2

+3 +7 +9

+2 +2 +2 +2

3 6 11 18 27

+5

…
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27.10 Some Familiar Sequences

Sequence Name Sequence Algebraic Defn Recurrence Relation

Natural or counting 
numbers

1, 2, 3, 4, 5, 6, 7, … Un = n U1 = 1, Un + 1 = Un + 1

Even Numbers: 2, 4, 6, 8, 10, … Un = 2n U1 = 2, Un + 1 = Un + 2

Odd Numbers: 1, 3, 5, 7, 9, 11, … Un = 2n − 1 U1 = 1, Un + 1 = Un + 2

Multiples of 3 3, 6, 9, 12, 15, … Un = 3n U1 = 3, Un + 1 = Un + 3

Multiples of 4 4, 8, 12, 16, 20, … Un = 4n U1 = 4, Un + 1 = Un + 4

Prime Numbers: 2, 3, 5, 7, 11, 13, 17, 19, …

Square Numbers:

12, 22, 32, 42, 52, …

↓ ↓ ↓ ↓ ↓
1, 4, 9, 16, 25, …

Un = n2 U1 = 1, Un + 1 = ( Un + 1)2

Difference between 
square numbers:

      3,     5,    7,     9,     11, … Un = 2n + 1 U1 = 3, Un + 1 = Un + 2

Triangle numbers: 1, 3, 6, 10, 15, … Un = n(n + 1)
2 U1 = 1, Un + 1 = Un + n + 1

Cube numbers:

13, 23, 33, 43, 53, …

↓ ↓ ↓ ↓ ↓
1, 8, 27, 64, 125, …

Un = n3 U1 = 1, Un + 1 = ( 3 Un + 1)3

Powers of 2:

21, 22, 23, 24, 25, …

↓ ↓ ↓ ↓ ↓
2, 4, 8, 16, 32, …

Un = 2n U1 = 2, Un + 1 = 2Un

Doubling (start with 2) 2, 4, 8, 16, 32, … Un = 2n U1 = 2, Un + 1 = 2Un

Trebling (start with 3) 3, 9, 27, 81, 243, … Un = 3n U1 = 3, Un + 1 = 3Un

Powers of 10: 10, 100, 1000, … Un = 10n U1 = 10, Un + 1 = 10Un

Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, … U1 = 1, Un = Un − 1 + Un − 2

Fraction Sequence 1
3,  14,  15,  16 ,  17, … Un = 1

n + 2 U1 = 1
3, Un + 1 = Un

Un + 1

Alternating Sequence 1, −3, 9, −27, 81, … Un = (−3)n − 1 U1 = 1, Un + 1 = −3Un

Reducing Sequence 92, 78, 64, 50, 36, … Un = 106 − 14n U1 = 92, Un + 1 = Un − 14

Notes:

Triangle numbers are found by adding the natual numbers in order, thus: 1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, …

Adding consecutive triangle numbers makes a square number, thus:

3 + 6 = 9,  6 + 10 = 16,  10 + 15 = 25,  …

Fibonacci numbers are formed by adding the last two number in the series together, thus: 

0 + 1 = 1,  1 + 1 = 2,  1 + 2 = 3,  2 + 3 = 5,  …
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27.11 Sequences in Patterns

Here are some typical patterns that lead to problems on sequences:

4 12 24 

6 15 27 

3 6 101 15

4 9 161 25

n(n+1) ÷ 2
½(n2+n)

n2

3n(n+3) ÷ 2
3/2(n2+3n)

2n(n+1)
2n2+2n

1 1 + 2 1 + 2 +3 1 + 2 + 3 + 4 1 + 2 + 3 + 4 + 5
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28.1 Intro to Arithmetic Progression

An Arithmetic Progression or sequence is based on a common difference between terms. Each term differs
from its adjacent terms by a fixed amount. Arithmetic progression is sometimes abbreviated to AP.

6 10 14 18 22

+4 +4 +4 +4

…

U1 U2 U3 U4 U5 Un

d  d  d   d

Where  is the first term, etc. and the n-th term is denoted by . The common difference between terms is d.U1 Un

The general definition of an AP can be given by the recurrence relation:

U n + 1 = U n + d (  n ≥ 1)where the integer

          U n = Um + (n − m) dAlso

Many series have the same recurrence relationship, so it is vitally important to state the first term.

The algebraic definition of an AP is:

U n = a + (n − 1) d

where a is the first term.

In general, an AP can be expressed as:

a,  a + d, a + 2d, a + 3d, a + 4d, …  a + (n − 1) d,  …

The AP can be shown graphically thus:

-1 1 2 3 n

Un

d

d

-1 1 2
3

n

−d

−d

Un

Arithmetic Progression: a linear progression

All Arithmetic Progressions are linear.

235



My A Level Maths Notes

In some exam questions, you may see an AP defined  as:

U n = an + b

  U n = an + U 0

        where b represents the zeroth term U0

28.1.1  Example:

A sequence is given by the equation . Find a and b if .Un = an + b U3 = 5 & U8 = 20

      U 3 = 3a + b = 5     (1)

      U 8 = 8a + b = 20 (2)

    b = 5 − 3a (3)From (1)

    b = 20 − 8a (4)From (2)

    5 − 3a = 20 − 8aEquate (3) & (4)

      8a − 3a = 20 − 5

      5a = 15

      a = 3

   b = 5 − 9Sub a into (3)

      b = −4

28.2 n-th Term of an Arithmetic Progression

Listing each term of an arithmetic progression:

    U 1 = a

    U 2 = a + d

    U 3 = a + 2d

    U 4 = a + 3d

    ↓

    U n = a + (n − 1) d

This is the same as saying that we take  steps to get from  to .n − 1 U1 Un

Note that the expression for the n-th term is a linear expression in n. These sequences are usually derived from
linear models.
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28.3 The Sum of n Terms of an Arithmetic Progression

The sum of a finite arithmetic progression is called an arithmetic series.

The sum of n terms in an AP is simply n times the average of the first and last term.

Thus:

Sn = n



a + l

2





 or Sn =
n

2
[a + l]

where l = a + (n − 1) d

An alternative method is to make a series and then reverse the terms and add the two series together to give .2Sn

U1 U2 Un − 1 Un

Sn a + (a + d) + ... + a + (n − 2) d + a + (n − 1) d

Sn a + (n − 1) d + a + (n − 2) d + ... + (a + d) + a

2Sn 2a + (n − 1) d + 2a + (n − 1) d + ... + 2a + (n − 1) d + 2a + (n − 1) d

      2Sn = n [2a + (n − 1) d]Therefore:

     Sn =
n

2
[2a + (n − 1) d]    Hence:

Note that:

S1 = a

I

28.3.1  Example:

The sum of the first n natural numbers is: 

     1 + 2 + 3 + 4 +  … + n

where a = 1,  d = 1

         Sn =
n

2
(n + 1)  or  

1

2
n (n + 1)

   ∑
n

r = 1

r =
n (n + 1)

2
and

In an AP, the sum of the terms that are equidistant from the beginning and end is always the same as the sum of
the first and last terms.

Since a number of questions are based on manipulating the equation for  it is worth practising rewriting the
equation in terms of n. 

Sn

    2Sn = n [2a + (n − 1) d]
    2Sn = 2an + dn (n − 1)

    2Sn = 2an + dn
2 − dn

    2Sn = dn
2 + n (2a − d)

∴   dn
2 + n (2a − d) − 2Sn = 0
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28.4 Sum to Infinity of an Arithmetic Progression

The sum to infinity of any progression depends on whether it is a convergent or a divergent series. 

For an AP with a common difference d, if:

j d is positive, the sum will grow to + ∞

j d is negative, the sum will grow to − ∞

If the sum for an AP is multiplied out to remove the brackets, we have:

Sn =
n

2
[2a + (n − 1) d]

Sn =
n

2
[2a + dn − d]

Sn = an +
dn2

2
−

dn

2

Sn =
dn2

2
+ n (a −

d

2 )
This is a quadratic equation and so as  then the sum . n → ∞ Sn → ∞

Therefore, any AP is divergent, (except for the trivial case of )a = 0,  & d = 0

28.5 Sum of n Terms of an Arithmetic Progression: Proof

The proof goes like this:

        Sn = a + (a + d) + (a + 2d) +… … + (l − 2d) + (l − d) + l   (1)

  Sn = l + (l − d) + (l − 2d) +… … + (a + 2d) + (a + d) + a   (2)Rewrite (1)

  2Sn = (a + l) + (a + l) + (a + l) +… … + (a + l) + (a + l) + (a + l)Add (1) & (2)

      2Sn = n (a + l)

     l = a + (n − 1) dSince: 

  ∴  Sn =
n

2
[a + a + (n − 1) d]

     =
n

2
[2a + (n − 1) d]

28.6 Arithmetic Progression: Worked Examples

28.6.1  Example:

1 A 24m metal rod has been split into a number of different lengths forming an AP. The first piece is
0·4m long and the last piece is 3.6m long. Find the total number of pieces.

Solution:

   Sn = n


a + l

2




 ∴     n =
2Sn

a + l

   n =
2 × 24

0·4 + 3·6
=

48

4

   n = 12
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2 An arithmetic progression has a first term of 1, and a common difference of 4. The sum of the first
n terms is 3160.

Show that  and find the value of n.2n2 − n − 3160 = 0

Solution:

   2Sn = n [2a + (n − 1) d]
   2 × 3160 = n [2 + (n − 1) 4]
   2 × 3160 = 2n + 4n (n − 1)

   3160 = n + 2n (n − 1)

   3160 = 2n
2 − n

   2n
2 − n − 3160 = 0

Find n by factorising:

3160 × 2

6320

40 × 158

80 × 79

   (n + 79 / 2) (n − 80 / 2) = 0

   (2n + 79) (n − 40) = 0

   n = 40 (ignore the −ve value)

3 The sum of the first 31 terms of an AP is 1302. Show that .a + 15d = 42

The sum of the 2nd and 9th terms is 21. Find a and d.

Solution:

   2Sn = n [2a + (n − 1) d]
   2 × 1302 = 31 [2a + (31 − 1) d]

   
2 × 1302

31
= 2a + 30d

   42 = a + 15d (1)

   U 2 = a + (2 − 1) d = a + d

   U 9 = a + (9 − 1) d = a + 8d

 ∴     21 = a + d + a + 8d

   21 = 2a + 9d (2)

   42 = a + 15d

   84 = 2a + 30d From (1)

   21 = 2a + 9d From (2)

   63 = 21d Subtract

 ∴     d = 3

   21 = 2a + 9 × 3 From (2)

   21 − 27 = 2a

   a = −3
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4 An AP has 200 terms with the first 4 terms as follows:

49 + 55 + 61 + 67…

What is the sum of the last 100 terms?

Solution:
There are three ways to tackle this problem, noting that there is considerable room for confusion
over the terms required to do the sum. The last 100 terms run from the 101st term to the 200th
term. (It’s the fence post problem!)

So find the value of the 101st and 200th terms and use either of the two formulae for the sum of
terms. Use the 101st term as a in the formulae. 

Alternatively, (method 3) find the sum of terms, , and subtract the sum of terms to 100, .S200 S100

   U 200 = 49 + (200 − 1) 6 = 1243

   U 101 = 49 + (101 − 1) 6 = 649

Method 1:

   Sn = n


a + l

2




   S101 → 200 = 100


649 + 1243

2




     = 94600

Method 2:

   Sn =
n

2
[2a + (n − 1) d]

   S101 → 200 = 50 [2 × 649 + (99) 6]
     = 94600

Method 3:

   S200 =
200

2
[2 × 49 + (199) 6]

    = 129200

   S100 =
100

2
[2 × 49 + (99) 6]

    = 34600

   S200 − S100 = 129200 − 34600

          = 94600

5 A sequence is given as  How many terms are required for the sum to exceed 162.2,  6,  10,  14 …

Solution:

   Sn =
n

2
[4 + 4 (n − 1)] = 2n

2

   2n
2 = 162

     n2 = 81

      n = 9
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6 The sum of the first n terms of a sequence is given by .Sn = 3n2 + n

Prove that the sequence is an AP, and find a and d.

Solution:
The method used to prove this is an AP, is to compare the given equation to the standard form of
an AP, by re-arranging the equation.

   Sn =
n

2
[2a + (n − 1) d]

   Sn = 3n
2 + n

   Sn = n (3n + 1)

   Sn =
n

2
(6n + 2)

   Sn =
n

2
(6n − 6 + 6 + 2)

   Sn =
n

2
(6 (n − 1) + 8)

   Sn =
n

2
[2 × 4 + (n − 1) 6]

a = 4,  d = 6where 

Alternatively, prove by comparing our sequence to the sum of the nth term:

     U n = Sn − Sn − 1

   = 3n
2 + n − [3(n − 1)2 + n − 1]

   = 3n
2 + n − [3n

2 − 5n + 2]
   = 3n

2 + n − 3n
2 + 5n − 2

   = 6n − 2

   = 6 (n − 1) + 4

   ≡ a + (n − 1) d

a = 4,  d = 6where 

7 Determine if the number 33 is a term in the sequence defined by .U n = 5n − 2

Solution:

33 = 5n − 2

5n = 35

  n = 6

Therefore, 33 is the 6th term in the sequence (as it is an integer value)

8 Determine if the number 100 is a term in the sequence defined by .U n = 5n − 2

Solution:

100 = 5n − 2

5n = 102

  n = 20·4

Therefore, 100 is not a term in the sequence, it is between the 20th and 21st terms.
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9 An AP has the terms  where .U 1, U 2, U 3, … S1 = 6, S2 = 17

State the value of , and calculate the common difference, d, and the value of .U 1 U 5

Solution:

(i)     U 1 = S1 = 6

(ii)    U 2 = S2 − U 1

   U 2 = 17 − 6 = 11

     d = U 2 − U 1

     d = 11 − 6 = 5

(ii)    U 5 = U 1 + (n − 1) d

   U 5 = 6 + (5 − 1) 5

   U 5 = 26

10 The ratio of the sixth and sixteenth terms of an AP is 4:9. The product of the first and third terms is
135. Assuming that the AP is positive, find the sum of the first 100 terms.

Solution:

Step (i)      
U 6

U 16

=
4

9

∴        9U 6 = 4U 16

        U 6 = a + (n − 1) d = a + 5dbut

     U 16 = a + (n − 1) d = a + 15d

∴   9 (a + 5d) = 4 (a + 15d)
         9a + 45d = 4a + 60d

        5a = 15d

          a = 3d        (1)

step (ii)    U 1 U 3 = 135

    a (a + 2d) = 135

      a2 + 2ad = 135

 (3d)2 + 6d
2 = 135but from (1)

      9d
2 + 6d

2 = 135

         15d
2 = 135

      d
2 = 9

      d = ±3    a = 9hence

Using the +ve value for d, (a positive AP given)

S100 =
100

2
[18 + (99) 3] = 99225

 EIFBL
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29.1 Geometric Progression (GP) Intro

An Geometric Progression or sequence is based on a common ratio between terms. Each term is found by
multiplying the previous term by a constant, r. Sometimes abbreviated to GP.

6 18 54 162 486

×3

…

U1 U2 U3 U4 U5 Un

r  r  r   r

×3 ×3 ×3

Where  is the first term, etc. and the n-th term is denoted by . The common ratio between terms is r.U1 Un

The general definition of an GP can be given by the recurrence relation:

U n + 1 = U n r (  n ≥ 1,  r ≠ 0)where the integer

Many series have the same recurrence relationship, so it is important to state the first term.

The algebraic definition is:

U n = ar
(n − 1)

where a is the first term.

In general, an GP can be expressed as:

a,  ar, ar
2, ar

3, … , ar
(n − 1)

29.2 The n-th Term of a Geometric Progression

Listing each term of an geometric sequence:

     U 1 = a

     U 2 = ar

     U 3 = ar
2

     U 4 = ar
3

     ↓

     U n = ar
(n − 1)

This is the same as saying that we take  steps to get from  to .n − 1 U1 Un

Note that the expression for the n-th term is an exponential expression in n. These sequences are usually derived
from exponential models, such as population growth or compound interest models. It also means the use of logs
on the exam paper.

The nth term can also be expressed as:

          U n = ar
n × r

−1 =
a

r
 rn

     
a

r
= U 0But 

          U n = U 0 r
n

Un = ar
(n − 1)

Un = U0 rn
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29.3 The Sum of a Geometric Progression

Adding the terms of a GP gives:

     Sn = a + ar + ar
2 +… + ar

n − 2 + ar
n − 1            (1)

Multiply (1) by r, and note how pairs of terms match up.

   rSn =         ar + ar
2 +…              +  ar

n − 1 + ar
n      (2)

       Sn − rSn = a − ar
n          Subtracting (1) − (2)

     Sn (1 − r) = a (1 − r
n)

∴         Sn =
a (1 − rn)

(1 − r)

For  multiplying top and bottom by −1, gives a more convenient formula, (top & bottom are +ve)r > 1

  Sn =
a (rn − 1)
(r − 1)

  | r | > 1 ⇔  r < −1 or r > 1

   Sn =
a (1 − rn)
(1 − r)

  | r | < 1 ⇔   − 1 < r < 1    

  Sn =
a (rn − 1)
(r − 1)

   | r | > 1 ⇔   r < −1 or r > 1

Either of these formulae will work in finding the sum, but it is easier to use them as indicated above. 

Note: The formulae above works well for large values of n. For small values of n (say 3 or less) then it is best to
find the first few terms and just add them up!

29.3.1  Example:

1  Sum the first 25 terms of the series 5, −7·5, 11·25, −16·875…

Solution:
We find that a = 5, r = −1·5, n = 25

   Sn =
a (1 − rn)

(1 − r)

   Sn =
5 (1 − (−1·5)25)

1 − (−1·5)

      =
5 (1 − (−25251·168))

2·5

      = 2.5 (1 + 25251·168)

      = 2.5 × 25252·168

      = 63130·42
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29.4 Divergent Geometric Progressions

A geometric progression can either be a divergent or a convergent series.

For any general GP, , if , the terms in the series become larger and
larger and so the GP is divergent.

a + ar + ar2 + ar3, … r > 1  r < −1or

A commonly quoted example of a divergent geometric progression concerns a chess board, in which 1p is placed
on the first square, 2p on the second, 4p on the third and so on. What is the total amount of money placed on the
board?

This is a GP with a common ratio of 2 and a start value of 1. The progression is finite and ends at square 64. The
graph below illustrates just the first 16 squares.

180 2 4 6 8 10 12 14 16

70,000

0

10,000

20,000

30,000

40,000

50,000

60,000

n

S
n

Sn =
a (rn − 1)
(r − 1)

=
1 (264 − 1)

(2 − 1)
= 1·85 × 10

19
pence

Sn =
a (1 − rn)
(1 − r)

=
1 (1 − 264)

(1 − 2)
= 1·85 × 10

19
pence
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29.5 Convergent Geometric Progressions

For any general GP, , if the common ratio is between −1 and +1, the terms in the series
become smaller and smaller and so the GP is convergent.

a + ar + ar2 + ar3, …

A good example of a convergent series is to take a piece of string, length L, and cut it in half. Keep one half and
cut it in half, keep one half and cut it in half, and so on…

The series, in theory, can go on for ever and will look like:

L

2
+

L

4
+

L

8
+

L

16
+…

This can be expressed in terms of n:

L

2
+

L

22
+

L

23
+

L

24
+…

L

2n

As  then the sum of all the cuts will get close to the original length L:n → ∞

L

2
+

L

22
+

L

23
+

L

24
+…

L

2n
→ L

lim
n → ∞



L

2
+

L

22
+

L

23
+

L

24
+…

L

2n



= L

This can be simplified by saying:

S∞ = lim
n → ∞

[Sn]

The graph below shows how the sum tends to 1, when .L = 1

160 2 4 6 8 10 12 14

0.5

0.6

0.7

0.8

0.9

1

n

S
n

29.6 Oscillating Geometric Progressions

For a GP, if the common ratio equals +1, the first term term is repeated again and again. 

If the ratio equals −1, the GP oscillates between +a and −a. 

Clearly, neither of these GPs converge.
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29.7 Sum to Infinity of a Geometric Progression

Any GP that has an infinite number of terms, but has a finite sum is said to be convergent.

So the sum to infinity only has a meaning if the GP is a convergent series. 

The sum to infinity of a divergent series is undefined.

The general formula for the sum of a GP is:

Sn =
a (1 − rn)

(1 − r)
  Sn = ( a

1 − r ) − ( a

1 − r ) r
nwhich can be written as:

However, if r is small and between  , (  then the term  tends to 0 as −1 < r < 1 r ≠ 0) rn n → ∞

Mathematically this is written:

| r | < 1,   lim
n → ∞

r
n = 0if then

and the sum to infinity becomes:

S∞ =
a

(1 − r)
  | r | < 1

The GP is said to converge to the finite sum of S∞

29.8 Geometric Progressions: Worked Examples

1 The first term of a GP is  and has a second term of 12.8 3

a) Show that the common ration is .3 / 2

b) Find the 6-th term

c) Show that the sum to infinity is 16 (2 3 + 3)
Solution:
a) Now

  U n + 1 = U n r ∴ r =
U n + 1

U n

  r =
12

8 3
=

3

2 3
×

3

3
=

3 3

2 × 3
=

3

2

b) 

  U n = ar
(n − 1) ⇒  8 3 × ( 3

2
)
5

   =
23 3 ( 3)5

25
=

3 × 9 3

22

   =
27

4

c) 

  S∞ =
a

(1 − r)
=

8 3

1 − 3
2

=
8 3
2 − 3

2

   =
8 3

2 − 3
× 2 =

16 3

2 − 3
×

2 + 3

2 + 3

   =
16 3 (2 + 3)

4 − 3
= 16 3 (2 + 3)

   = 32 3 + 16 × 3 = 16 (2 3 + 3)
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2 A sequence is defined by :

U 1 = 2  U n + 1 = 1 − U n  n ≥ 0and for

Write down the values of U2, U3, U4, U5

Find:

 ∑
100

n = 1

U n

Solution:

  U 2 = 1 − 2 = −1

  U 3 = 1 − (−1) = 2

  U 4 = 1 − 2 = −1

  U 5 = 1 − (−1) = 2

Sequence is, therefore, an alternating series:  2, −1,  2, −1,  2, −1

The sum to  can be found by considering that there are 50 terms of ‘2’ and 50 terms of ‘−1’n = 100

Hence:

 ∑
100

n = 1

U n = 100 − 50 = 50

Extension work:
This gives an opportunity to explore an alternating series. An alternating series is one in which the signs
change after each term. The sequence also oscillates between two numbers of 2 and −1, with a mid-point
of 0·5.

Now consider the alternate form of the sequence. This can be written as:

U n = 0·5 − 1·5 (−1)n

Note the use of  in order the make the sign change. An important tool in mathematics.(−1)n

The sum of the terms can be written in Sigma notation as:

 ∑
100

n = 1

U n = ∑
100

n = 1

0·5 − ∑
100

n = 1

1·5 (−1)n

   = 50 − ∑
100

n = 1

1·5 (−1)n

   = 50 − 1·5 ∑
100

n = 1

(−1)n

The second term can be considered as a GP with a common ratio of −1.

 ∑
100

n = 1

U n = 50 − 1·5 S100

  S100 =
−100 [1 − (−1)100]

(1 − (−1))
= 0

 ∑
100

n = 1

U n = 50 − 1·5 ∑
100

n = 1

(−1)100

   = 50 − 0

   = 50
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3 As n → ∞,  Un + 1 → L,  Un → L

∴  L = pL + q

  L − pL = q

  L (1 − p) = q

  L =
q

1 − p

4 Water is weekly pumped from a well, with 10,000 gallons being extracted in the first week. The common
ratio is given as 0·85.

(i) Calculated the amount of water extracted at the end of week 4.

(ii) Find how long it takes for the amount of water to be extracted per week to fall to below 100 gallons,
rounding up to the nearest week.

(iii) Find the total water extracted up to and including the week found in (ii) above, to 4sf.

Solution:

(i)

   U n = ar
(n − 1)

   U 4 = 10000(0·85)3

   U 4 = 6141·25 gallons

(ii)

   ar
(n − 1) < 100

   10000 [0·85
(n − 1)] < 100

   0·85
(n − 1) <

100

10000

   0·85
(n − 1) < 0·01

   (n − 1) ln 0·85 < ln 0·01

   (n − 1) >
ln 0·01

ln 0·85

   n > 1 +
ln 0·01

ln 0·85

   n > 29·34

   n = 30 weeks

(iii)

   Sn =
a (1 − rn)

(1 − r)

   S30 =
10000 (1 − 0·8530)

(1 − 0·85)

   S30 = 66157·95

   S30 = 66160  gallons (4sf )
 OECFRL
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5 A GP has the first term a = 15, and the second term of 14·1 

(i)   Show that S∞ = 250

(ii)  The sum of the first n terms is greater than 249. Show that 0·94n < 0·004

(iii) Find the smallest value of n to satisfy the inequality in (ii)

Solution:

(i)

     r =
14·1

15
= 0·94

   S∞ =
a

(1 − r)
  | r | < 1

   S∞ =
15

(1 − 0·94)

       =
15

0·06
= 250

(ii)

   Sn =
a (1 − rn)

(1 − r)

   
15 (1 − 0·94n)

(1 − 0·94)
> 249

   15 (1 − 0·94
n) > 249 × 0·06

   1 − 0·94
n >

249 × 0·06

15

   1 − 0·94
n > 0·996

   − 0·94
n > −0·004

∴     0·94
n < 0·004          (note change of inequality)

(ii)

   n ln 0·94 < ln 0·004

        n >
ln 0·004

ln 0·94
≈ 89·24 (2dp)   (note change of inequality)

∴  n = 90Least value of 

Note the trap and the reason for the change in inequality:

         n ln 0·94 < ln 0·004

      − 0·062n < −5·52

      0·062n > 5·52

       n >
5·52

0·062

As n increases, so does  until the limit is reached when . The value of  represents
the point at which the curve crosses a value of . Since n is an integer value, the smallest value
to satisfy the inequality is 90. 

Sn S∞ = 250 n ≈ 89·24
Sn = 249

Drawing a graph of  will illustrate this.Sn : v : n

 OECFRL
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6 The difference between the 4th and the 1st term of a GP is 3 times the difference between the 2nd and the
1st term. Find the possible values of the common ratio.

Solution:

   U n = ar
(n − 1)

   U 4 − U 1 = 3 (U 2 − U 1)

   ar
3 − a = 3 (ar − a)

   r
3 − 1 = 3 (r − 1)

   r
3 − 3r + 2 = 0

   (r + 2) (r − 1) (r − 1) = 0

   r = −2,  or 1               OECFRL

7 You decide to save some money for a rainy day, by joining a monthly savings scheme. The initial deposit
is £100, and after 360 months the final payment will be £2110. What is the total paid into the scheme
assuming the monthly payments increase by an inflation adjusted amount every month.

 Solution:
From the question, a = 100, and U 360 = 2110

  U n = ar
(n − 1)

  2110 = 100r
(359)

  r
(359) =

2110

100
= 21·1

   r = 359
21·1

   r = 1·00853   (This represents an inflation of approx 0·8% per month)

  Sn =
a (rn − 1)
(r − 1)

 r > 1

  S360 =
100 (1·00853360 − 1)

(1·00853 − 1)

   =
100 (21·279 − 1)

0·00853
=

2027·99

0·00853

   = £237,749·72      saved over 360 months (30 years)
 OECFRL
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8 This question is dressed up to hide the fact that it is a question on GPs.

A starship uses 2.5 tonnes of interstellar dust to make one standard hyperspace jump. A fault in the
power crystals means that each subsequent jump consumes 3% more dust than the previous jump.

a) Calculate the amount of dust used in the 6th jump.

b) The engine fault has restricted the storage of dust to 206 tonnes. Show that , where n
    represents the number of jumps.

1.03n ≤ 3·472

c) Using logs, find the largest number of standard jumps that can be made with this restricted mass of
    dust. 

Solution:

(a)      U n = ar
(n − 1)

       a = 2.5  &  r = 1·03 (3%)

   U 6 = 2.5 × 1·03
(5)

        = 2·898 tonnes (4sf)

(b)

   Sn =
a (rn − 1)
(r − 1)

∴   
2·5 (1·03n − 1)

(1·03 − 1)
≤ 206    (number of jumps is an integer)

   2·5 (1·03
n

− 1) ≤ 206 × 0·03

     1·03
n

− 1 ≤
206 × 0·03

2·5

     1·03
n

− 1 ≤ 2·472

∴          1·03
n ≤ 3·472

(b)

    n ln 1·03 ≤ ln 3·472

         n ≤
ln 3·472

ln 1·03
≈ 42·11 (2dp)

     n = 42Least value of 
 OECFRL

9 Given that  and that the limit of  as  is , form an equation for  and
find its value.

U n + 1 = 0·5 U n + 25 U n n → ∞ UL UL

Solution:
At the limit: U n + 1 = UL & U n = UL

∴ UL = 0·5 UL + 25

 0·5 UL = 25

       UL = 50
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10 A GP has a common ratio of 0·7, and a first term of 25. 

Find the least value of n such that the nth term is less than one.

Solution:

   U n = ar
(n − 1)

   U n = 25 × 0·7(n − 1) < 1

   0·7(n − 1) <
1

25

   log0·7 
1

25
< n − 1

   9·025 < n − 1

   10·025 < n

But n is an integer value, and the least value for n is 11

Test for correct solution:

   25 × 0·7(11 − 1) = 0·706

   25 × 0·7(10 − 1) = 1·0088

29.9 Heinous Howlers for AP & GP

j Don't mix up the AP & GP formulas, especially for the sum of terms.

j In quoting the AP formula  ensure you know what the l stands for. It is not 1!!!!

l is the last term of an arithmetic sequence and .

Also make sure you know that the a stands for the first term.

Sn =
n

2
[a + l]

l = a + (n − 1) d

j If the terms of an AP are decreasing, the common difference must be negative.

j

j In a GP, the nth term is given by . Do not use U n = ar(n − 1) (ar)n − 1

j

j
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29.10 AP & GP Topic Digest

Arithmetic Progression (AP)    Geometric Progression (GP)

 aFirst term:  aFirst term:

 dCommon difference:  rCommon ratio:

n  -th term: n  -th term:

         Un = a + (n − 1) d Un = arn − 1

Un = nd + U0 Un = U0 rn

Un − Un − 1 = d
Un

Un − 1
= r

Sum of first n terms: Sum of first n terms:

Sn = n
2 [2a + (n − 1) d] Sn = a(rn − 1)

(r − 1)     | r | > 1

Sn = n
2 [a + l]  where l = last term Sn = a(1 − rn)

(1 − r)     | r | < 1

and l = a + (n − 1) d

Sum to infinity: Sum to infinity:

N / A S∞ = a
(1 − r)

    | r | < 1if

Sum of next n terms: 

Un + 1 + Un + 2 +  … … + U2n = S2n − Sn

Sn − Sn − 1 = U n

     ∑
n

r = 1

(ar + br) = ∑
n

r = 1

ar + ∑
n

r = 1

br

     ∑
k

r = 1

ar + ∑
n

r = k + 1

ar = ∑
n

r = 1

ar r < k < n

     ∑
n

r = 1

kar = k ∑
n

r = 1

ar

     ∑
n

1

c = nc c where is a constant

     ∑
n

1

1 = n

    ∑
n

r = m

⇒ n − m + 1No. of terms in sum

     ∑
n

r = 1

r =
n (n + 1)

2
  Formula for the sum of the first n natural numbers
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30.1 Binomials and their Powers

A binomial is simply a polynomial of two terms with the general form , e.g.  or
. A binomial expansion is about raising a binomial to a power and expanding out the expression.

(a + b) (x + y) , ( x + 2y)
 (x2 − 2)

Look at the following expansions for the general form : (a + b)n

(Only +ve integers of n are considered in C2, other rational values are considered in C4).

  (a + b)0 = 1

  (a + b)1 = 1a + 1b

  (a + b)2 = 1a
2 + 2ab + 1b

2

  (a + b)3 = 1a
3 + 3a

2
b + 2ab

2 + 1b
3

  (a + b)4 = 1a
4 + 4a

3
b + 6a

2
b

2 + 4ab
3 + 1b

4

From the expansions above, note the following properties:

j Number of terms in the expansion of  is (a + b)n n + 1

j The first term is always  and the last term an bn

j The power or exponent of a starts at  and decreases by 1 in each term to an a0

j The power or exponent of b starts at  and increases by 1 in each term to b0 bn

j In the kth term: a will have a power of  and b a power of (n − k + 1) (k − 1)

j The sum of the powers of each term equals n

j The coefficients of each term follow a particular pattern that we know as Pascal’s Triangle

j If the expansion is  then the signs in the expansion alternate(a − b)n

j Each expansion is finite

30.2 Pascal’s Triangle

Pascal’s triangle is named after the mathematician Blaise Pascal who wrote about the unending triangle in 1653.
The triangle was well know to mathematicians as early as 1100, but Pascal’s name is associated with it because
he published a study which summed up all that was known about it at the time.

Pascal’s triangle gives us the binomial coefficient of each term in the expanded binomial. The sequence can be
built up by adding the numbers in the row just above each given position. (Numbers outside the triangle are zero)

Some features of note:

j Row numbering starts at 0, (the power n) and row numbers then match the 2nd number in each row

j If each row is added up, a new sequence is created, (the powers of 2).

1

1 1

1 1

1

1

1

1

1

1

1

2

3 3

46

5

6

7

1

1

4

5

6

71

1010

15

21

15

21

20

3535

:::::::

8

4

2

1

Row Sum

16

32

64

128

3

2

1

0

Row Number

4

5

6

7

: :

(n)
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30.2.1  Example:

1 Use Pascal’s triangle to expand (3 + 2x)5

Solution:
Use row 5 from Pascal’s triangle to find the coefficients, which are 1, 5, 10, 10, 5, 1.

Set up a table to help calculate the terms:

Coef f icient 1st term 2nd term Calculation Total

1 35 1 1 × 243 × 1 243

5 34 (2x) 5 × 81 × 2x 810x

10 33 (2x)2 10 × 27 × 4x2 1080x2

10 32 (2x)3 10 × 9 × 8x3 720x3

5 31 (2x)4 5 × 3 × 16x4 240x4

1 1 (2x)5 1 × 1 × 32x5 32x5

∴   (3 + 2x)5 = 243 + 810x + 1080x
2 + 720x

3 + 240x
4 + 32

5  

2 Use Pascal’s triangle to expand (3x − 1
x )4

Solution:
Use row 4 from Pascal’s triangle to find the coefficients, which are 1, 4, 6, 4, 1.

Set up a table to help calculate the terms:

Coef f icient 1st term 2nd term Calculation Total

1 (3x)4 1 1 × 81x4 × 1 81x4

4 (3x)3 (−1
x)1 4 × 27x3 × (−1

x) −108x2

6 (3x)2 (1
x)2 6 × 9x2 × (−1

x)2 54

4 (3x)1 (−1
x)3 4 × 3x × (−1

x)3 −12 1
x2

1 1 (1
x)4 1 × 1 × (−1

x)4 1
x4

 ∴   (3x −
1

x )
4

= 81x
4 − 108x

2 + 54 −
12

x2
+

1

x4

Note the alternating signs in the expansion.

3 Use Pascal’s triangle to find the coefficient of the  term of the binomial x4 (5x + 2)6

Solution:
Use row 6 from Pascal’s triangle to find the coefficients, which are 1, 6, 15, 20, 15, 6, 1.

Set up a table to help calculate the terms:

Coef f icient 1st term 2nd term Calculation Total

1 (5x)6 1

6 (5x)5 2

15 (5x)4 22 15 × 625x4 × 4 37500x4

20 (5x)3

15

Coefficient of the  termx4  = 37500
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30.3 Factorials & Combinations

Pascal’s Triangle is fine for working out small powers of a binomial, but is very tedious for higher powers.

An alternative method of expanding a binomial is to use the binomial theorem, which involves the use of
factorials, combinations and permutations.

30.3.1 Factorials

A factorial is a simple and short way to write down the product of all the positive integers from 1 to n thus:

    n! = n (n − 1) (n − 2) … (3) (2) (1)  (called n factorial)

     5! = 5 × 4 × 3 × 2 × 1  or    5! = 5.4.3.2.1e.g.

where, by definition:

0! = 1

Recursively this can be written as:

N! = N × (N − 1)!

30.3.2 Combinations & Permutations

Digressing into statistics for a moment, a permutation is an arrangement, whereas a combination is a selection.

A permutation is an arrangement of things, without repetition, and taking into account the order of things. It is
always a whole number.

The number of permutations of n things, taken r at a time is given by:

n
Pr =

n!

(n − r)!

A combination is an selection of things, without repetition, but where the order is not important. 

The number of combinations of n things, taken r at a time is given by:

 n
Cr × r! = n

Pr Now:

∴    n
Cr =

n!

r! (n − r)!

This formula can be used to find the coefficient of each term in the binomial expansion.

Note that combinations are symmetric so that . So choose the easiest one to calculate if doing it by
hand (or use a calculator).

12C5 = 12C7

n
Cr = n

Cn − r

30.3.3 Alternative Symbology

Sometimes, alternative symbology is used for combinations:

n
Cr = ( ) =

n!

r! (n − r)!
n

r

We say “n choose r”, which is the number of ways of choosing r things from a pool of n items, where order is
not important.
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30.4 Binomial Coefficients

Calculating the binomial coefficient is a major part of using the binomial theorem. Using the combination
format, Pascal’s triangle can be redrawn thus:

1

:::::::

8

4

2

1

Row Sum

16

32

64

128

3

2

1

0

Row Number

4

5

6

7

: :

(n)

7C1
7C0

7C2
7C3

7C4
7C5

7C6
7C7

6C1
6C0

6C2
6C3

6C4
6C5

6C6

5C1
5C0

5C2
5C3

5C4
5C5

4C1
4C0

4C2
4C3

4C4

3C1
3C0

3C2
3C3

2C1
2C0

2C2

1C1
1C0

Pascals Triangle with Combinations

These are easily calculated on a calculator by using the  or  button on the calculator.nCr nCr

Note that nC0 = 1;  nC1 = n;  nCn − 1 = n;  nCn = 1

Recall that the counter r starts at zero. It can become confusing if care is not taken over the difference between
the term number and the counter r. If the term number is k, then .r = k − 1

Redrawing and simplifying Pascal’s triangle we have:

1

:::::::

8

4

2

1

Row Sum

16

32

64

128

3

2

1

0

Row Number

4

5

6

7

: :

(n)

7C2
7C3

7C4
7C5

6C2
6C3

6C4

5C2
5C3

4C2

n

1

1

1

1

1

1

1

1

1

1

1

1

1

1

n n

n n

n

n

n n

n

n

Pascals Triangle with Combinations Simplified
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The properties of the binomial coefficients are:

j The binomial expansion is symmetrical, with nCr = nCn − r

j When   then   r = 0 nC0 = 1

j When   then  r = 1 nC1 = n

j When   then  r = n − 1 nCn − 1 = n

j When   then  r = n nCn = 1

j From Pascals Triangle see that    and   nCr − 1 + nCr = n + 1Cr
nCr + nCr + 1 = n + 1Cr + 1

j Binomial coefficients are all integers (theory of combinations)

j The sum of all the coefficients is 2n

j To calculate: use either the  button on the calculator, or use: nCr
n
Cr =

n!

r! (n − r)!
j The expression  means “n choose r” and is the number of ways to choose r things from a pool of n.nCr

j Note that the  format is only valid if n and r are positive integers.nCr

Why use combinations?

For any given term in an expansion [say ] then the number of
combinations of a and b in that term will be the coefficient. For example, the third term includes . 
That is 2 a's and 2 b's. How many ways are there of arranging them? The answer is 6, which are: aabb, abab,
abba, bbaa, baba, abba. This is the same as the coefficient.

(a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4

a2b2

Calculating the binomial coefficient.

There are two ways of calculating the binomial coefficient. The first is the combination method and the second is
a longer method, which will be required in C4.

 n
Cr = ( ) =

n!

r! (n − r)!
Combination method:

n

r

 Coef f icient =
n (n − 1) (n − 2) (n − 3) (n − 4) … (n − r + 1)

r!
Long method:

Note that in the longer method there are r terms on the top.

30.4.1  Example:

Calculate 8C5

8
C5 =

n (n − 1) (n − 2) (n − 3) (n − 4)
5!

=
8 × 7 × 6 × 5 × 4

5!
=

8 × 7 × 6⁄ × 5⁄ × 4⁄
5⁄ × 4⁄ × 3⁄ × 2⁄ × 1

= 56

or

8
C5 =

n!

r! (n − r)!
=

8!

5! (8 − 5)!
=

8!

5! 3!
=

8 × 7 × 6⁄ × 5⁄ !

5⁄ ! × 3⁄ !
= 56

Note how the digits of the factorials in the denominator add up to the same value as the factorial digit in
the numerator. In this case 5 + 3 = 8
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30.5 Binomial Theorem

The Binomial Theorem codifies the expansion of  where n is a positive integer.(a + b)n

When n is a positive integer the series is finite and gives an exact value for  and is valid for all values of
a & b. The expansion terminates after  terms.

(a + b)n

n + 1

The Binomial Theorem can be written in several forms, however learning the pattern of the first two versions are
beneficial.

The long version is written thus:

(a + b)n = a
n +

n

1!
a

n − 1
b +

n (n − 1)
2!

a
n − 2

b
2 +

n (n − 1) (n − 2)
3!

 an − 3
b

3 +… +  bn

Simplyfying a bit:

(a + b)n = a
n + n an − 1

b +
n (n − 1)

2!
a

n − 2
b

2 +… +
n (n − 1) (n − 2) … (n − r + 1)

r!
 an − r

b
r +… +  nab

n − 1 +   bn

Replacing the binomial coefficients with the combination format gives:

(a + b)n = n
C0 an + n

C1 an − 1
b + n

C2 an − 2
b

2 + n
C3 a

n − 3
b

3… + n
Cn − 1 ab

n − 1 + n
Cn bn

Term no k:                    À           Á                 Â                  Ã                         (n)                     (n+1)

Using the alternative symbology we have:

(a + b)n = ( ) a
n + ( ) a

n − 1
b + ( ) a

n − 2
b

2 + ( ) a
n − 3

b
3 +… + ( ) ab

n − 1 + ( ) b
nn

0

n

1

n

2

n

3

n

n − 1

n

n

n
C0 = ( ) = 1;  n

Cn = ( ) = 1;  n
C1 = ( ) = n;  n

Cn − 1 = ( ) = n;where 
n

0

n

n

n

1

n

n − 1

The general form of any term is given by the th term:(r + 1)

n
Cr a

n − r
b

r  ( ) a
n − r

b
r

or
n

r

Simplifying the first and last two coefficients we can write:

(a + b)n =  an + na
n − 1

b + n
C2 an − 2

b
2 + n

C3 a
n − 3

b
3 +… + n

Cr a
n − r

b
r +… +  nab

n − 1 + b
n

(a + b)n = a
n + na

n − 1
b + ( ) a

n − 2
b

2 + ( ) a
n − 3

b
3 +… + ( ) a

n − r
b

r +… +  nab
n − 1 + b

nn

2

n

3

n

r

The compact method of defining the binomial theorem is:

(a + b)n = ∑
n

r = 0
( ) a

n − r
b

r  = ∑
n

r = 0

n
Cr a

n − r
b

rn

r
or

Note that the term counter, r, starts at zero.
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30.6 Properties of the Binomial Theorem

A summary:

j Number of terms in the expansion of  is (a + b)n n + 1

j The first term is always  and the last term an bn

j The power or exponent of a starts at  and decreases by 1 in each term to an a0

j The power or exponent of b starts at  and increases by 1 in each term to b0 bn

j The general term of  is the th term, which is given by  (a + b)n (r + 1) Tr + 1 = nCr an − r b r

j The kth term will be:

where: 

a will have a power of  and b a power of 

nCk − 1 an − (k − 1)b(k − 1)

(n − k + 1) (k − 1)
r = (k − 1)

j The sum of the powers of each term equals n

j The coefficients of each term follow a well defined pattern

j The coefficient of the first and last term is always 1.      nC0 = 1   &   nCn = 1

j The coefficient of the second and last but one term is always n      nC1 = n   &   nCn − 1 = n

j If the expansion is  then the signs in the expansion alternate(a − b)n

j Each expansion is finite provided that n is a positive integer

30.7 Binomial Theorem: Special Case

If 1 is substituted for a and x is substituted for b, then the expansion becomes:

(1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +… +  nx
n − 1 +   xn

(1 + x)n = 1 + nx + n
C2 x2 + n

C3 x
3 +… + nx

n − 1 +  xn

This can be used to solve more complex problems and derive the full binomial expansion in the section above. 

Consider:

(a + x)n = 

a (1 +

x

a)
n

= a
n (1 +

x

a)
n
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30.8 Finding a Given Term in a Binomial

Note the way that terms are counted—the binomial counter r starts at zero, but humans count the terms from one.

Therefore, the kth term is the  term and is given by:(r + 1)th

n
Cr a

n − r
b

r or ( ) a
n − r

b
rn

r

To find the kth term, , and is given by:r = k − 1

    kth = n
Ck − 1 an − (k − 1)

b
k − 1 or ( ) a

n − (k − 1)
b

k − 1
term

n

k − 1

    = n
Ck − 1 an − k + 1

b
k − 1   or ( ) a

n − k + 1
b

k − 1n

k − 1

30.8.1  Example:

Find the 9th term of . The coefficient is given by:(x − 2y)12

  12
C9 − 1 = 12

C8 =
12!

8! (12 − 8)!
=

12!

8! 4!

    =
12 × 11 × 10 × 9 × 8!

8! × 4 × 3 × 2 × 1
=

11 × 10 × 9

2

    = 495

Add in the x & y terms:

  = 495x
12 − 8 y8 = 495x

4
y

89-th term

To find a term with a given power, the general term in an expansion is give by:

n
Cr a

n − r
b

r

30.8.2  Example:

Find the coefficient of the  term in the expansion of x5 (2 − 2x)7

Solution:
The general term is given by:

n
Cr a

n − r
b

r

In this case:

n = 7,  a = 2,  b = −2x

The  term is when  : x5 r = 5

      7
C5 2

7 − 5 (−2x)5 = 7
C5 2

2 (−2x)5

      = 7
C5 4 (−32x

5) = − 7
C5 128x

5

      = −128 ×
7!

5! 2!
x

5 = −128 ×
7 × 6

2
x

5

      = −2688x
5

 ∴   = −2688The coefficient is:
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30.9 Binomial Theorem: Worked Examples

30.9.1  Example:

1 Expand (x + 2
x )4

Solution:

 (a + b)4 = 4
C0 a4 + 4

C1 a4 − 1
b + 4

C2 a4 − 2
b

2 + 4
C3 a

4 − 3
b

3 + 4
C4 b

4

 (a + b)4 = 4
C0 a4 + 4

C1 a3
b + 4

C2 a2
b

2 + 4
C3 ab

3 + 4
C4 b

4

 4
C0 = 4

C4 = 1   4
C1 = 4

C3 = 4But and

  4
C2 =

4 × 3

2!
= 6

 (a + b)4 = a
4 + 4 a3

b + 6 a2
b

2 + 4 ab
3 +  b4

 a = x  b =
2

x
Let and

 (x +
2

x )
4

= x
4 + 4 x3 (2

x ) + 6 x2 (2

x )
2

+ 4 x (2

x )
3

+ (2

x )
4

   = x
4 + 8 x2 + 6x

2 ( 4

x2) + 4 x ( 8

x3) +
16

x4

   = x
4 + 8 x2 + 24 +

32

x2
+

16

x4

2
What is the coefficient of  in ?x6 (x2 +

2

x )
12

Solution:
The general term in an expansion is give by:

n
Cr a

n − r
b

r   

Require to find which value of r will give a term in x6

 a = x
2 b =

2

x
 n = 12Let

The term then becomes:

 12
Cr (x2)12 − r (2

x )
r

= 12
Cr (x24 − 2r) 2

r
x

−r

     = 2
r × 12

Cr x
24 − 3r (1)

Now work out the value of r required to give x6

 24 − 3r = 6

 3r = 24 − 6

 r = 6

Substitute in (1) for the coefficient only

 2
r × 12

Cr = 2
6 × 12

C6

   = 2
6 ×

12 × 11 × 10 × 9 × 8 × 7

6 × 5 × 4 × 3 × 2 × 1

   = 64 ×
11 × 9 × 8 × 7

6

   = 59136
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3 Expand  up to the terms including . Find an estimate for (1.98)10 by using a suitable
value for x.

(2 − x)10 x3

Solution:

(2 − x)10 = 1a
10 + 10a

9
b + 10

C2 a8
b

2 + 10
C3 a

7
b

3 …

 a = 2 b = −x n = 10Let

(2 − x)10 = 2
10 + 10 × 2

9 (−x) + 10
C2 28 (−x)2 + 10

C3 2
7 (−x)3 …

  = 2
10

− 10 × 2
9 x + 10

C2 28 x2 − 10
C3 2

7 x3…

10
C2 =

10!

2!  8!
=

10 × 9 × 8⁄ !

2 × 8⁄ !
= 5 × 9 = 45

10
C3 =

10!

3!  7!
=

10 × 9 × 8 × 7⁄ !

3 × 2 × 7⁄ !
= 10 × 3 × 4 = 120

(2 − x)10 = 1024 − 5120 x + 11520 x2 − 15360 x3…

 2 − x = 1.98 ∴  x = 0·02Now

1·98
10 ≅ 1024 − 102·4 + 4·608 − 0·12288

    ≅ 926·09 (2 dp)

4 (a) Expand the binomial .(1 + 3x)3

(b) Find the x coefficient in the expansion .(3 + x)10

(c) Find the x coefficient in the expansion .(1 + 3x)3 (3 + x)10

Solution:
(a)

(1 + 3x)3 = 1 + 3 (3x) + 3 (3x)2 + (3x)3

(1 + 3x)3 = 1 + 9x + 27x
2 + 27x

3

(b)

(3 + x)10 = 3
10 + ( ) 3

9 (x) + ( ) 3
8 (x)2 +…10

1

10

2

  = 3
10 +

10!

1! 9!
3

9 (x) +
10!

2! 8!
3

8 (x)2 +…

  = 3
10 +

10 × 9!

9!
3

9 (x) +
10 × 9 × 8!

2 × 8!
3

8 (x)2 +…

  = 3
10 + 19 6830 (x) + 45 × 3

8 (x)2 +…

 x = 196 830Coefficient of 

(c)

(1 + 3x)3 (3 + x)10 = (1 + 9x + 27x
2 + 27x

3) (310 + 196 830 (x) +… )
  x = 196 830x + 3

10 × 9x = 196 830x + 531 441xx term: 

 x = 728,271Coefficient of 
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5 The expression  expands to .(1 − 3x)4 1 − 12x + px2 + qx3 + 81x4

(a) Find the values of p and q

(b) Find the coefficient for the x term of (3 + x)8

(c) Find the coefficient for the x term of (3 + x)8(1 − 3x)4

Solution:
(a)

(1 + b)n = 1 + nb + n
C2 b2 + n

C3 b
3 +… + nb

n − 1 +  bn General expansion

(1 + b)4 = 1 + nb + n
C2 b2 + nb

3 +  b4          Has 5 terms

 n = 4;  b = −3x;  n
C2 = 6Substitute:

(1 − 3x)4 = 1 + 4 (−3x) + 6 (−3x)2 + 4 (−3x)3 +  (−3x)4

(1 − 3x)4 = 1 − 12x + 54x
2 − 108x

3 +  81x
4

∴ p = 54;  q = −108
    

(b)

 (a + b)8 = 8
C0 a8 + 8

C1 a7
b + 8

C2 a6
b

2 + 8
C3 a

5
b

3 +…

 n = 8;  a = 3;  b = x;  8
C2 = 28Substitute:

 (3 + x)8 =  38 + 8 (3)7
x + 28 (3)6

x
2 +…

x = 8 (3)7 = 17 496Coefficient of   

(c)

(1 − 3x)4 (3 + x)8 = (1 − 12x + 54x
2… ) ( 38 + 17 496x… )  Only need up to x term

     = 17 496x − 12x × 3
8

     = 17 496x − 78 732x

     = −61 236x

x = −61 236Coefficient of   
EAFQLA
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30.10 Alternative Method of Expanding a Binomial

This method relies on knowing some of the basic properties of the binomial discussed earlier. Whilst this method
has its merits, it is much better to use the  button on the calculator imho.nCr

30.10.1  Example:

1 Expand the binomial .(x + y)5

Alternative Method:

Step 1: Calculate the number of terms: n + 1 = 6

Step 2: Layout the binomial with the term numbers and just the x terms:

          À         Á         Â        Ã        Ä         Å

(x + y)5 = x
5  +   x4  +   x3  +   x2  +   x1  +   x0

(note that the terms numbers start with 1)

 

Step 3: Add in the y terms:

             À           Á           Â          Ã            Ä           Å

(x + y)5 = x
5
y

0  +   x4 y1 +   x3 y2 +   x2
y

3  +   x1 y4 +   x0
y

5

Step 4: Add in the outer two coefficients for terms 1, 2, 5, & 6 and simplify : x0 & y0

           À           Á           Â          Ã            Ä        Å

(x + y)5 = x
5  +   5x

4 y +   x3 y2 +   x2
y

3  +   5x y4 + y
5

Step 5: Calculate the coefficients for the remaining terms 3 & 4. This is done by taking the
coefficient and power of the previous x term and multiply them together and divide that by the
term number of that previous term.

           À           Á                  Â                  Ã               Ä         Å

(x + y)5 = x
5  +  5x

4 y    +    (10) x
3 y2    +   (10) x

2
y

3  +   5x y4 + y
5

           Ø (5 × 4

2 ) Ú      Ø (10 × 3

3 ) Ú 

∴            (x + y)5 = x
5 + 5x

4 y + 10x
3 y2 + 10x

2
y

3 + 5x y4 + y
5
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2 Find the coefficient of the  term in the binomial .x3 (2 − x)10

Alternative Method:

Step 1: Calculate the number of terms:  (not really necessary for this example)n + 1 = 11

Step 2: Layout the binomial with the term numbers and just the constant (2) terms:

            À         Á         Â         Ã        Ä

(2 − x)10 = 2
10  + 2

9  +    28  +   27 +   26  +…

Step 3: Add in the x terms:

                À                  Á                 Â            Ã            Ä

(2 − x)10 = 2
10 (−x)0  +   29 (−x)1 +  28 (−x)2 + 2

7 (−x)3  +…

(2 − x)10 = 2
10       −      29

x      +        28
x

2   −    27
x

3 +…

Step 4: Add in the first two coefficients for terms 1 & 2:

            À                Á                Â            Ã            Ä

(2 − x)10 = 2
10  −   10 × 2

9
x   +    28

x
2  −   27

x
3 +…

Step 5: Calculate the coefficients for the remaining terms 3 & 4. This is done by taking the
coefficient and power of the previous x term and multiply them together and divide that by the
term number of that previous term.

            À                  Á                    Â                      Ã 

(2 − x)10 = 2
10   −   10 × 2

9
x     +    (45) × 2

8
x

2  −   (120) × 2
7
x

3 +…

      Ø (10 × 9

2 ) Ú         Ø (45 × 8

3 ) Ú 

Simplifying:

À           Á           Â              Ã 

(2 − x)10 = 1024 − 5120x + 11520x
2 − 15360x

3 +…

The coefficient of the  term = x3 −15360

3 One source of confusion with this method can be if trying to expand something like .(1 + x)4

Care must be taken to include the 1 with its powers.

Solution:
Step 1, 2, 3 & 4: Combined

            À            Á                 Â                   Ã               Ä

(1 + x)4 = 1
4
x

0 + 4 × 1
3 x1 +  ¸ × 1

2 x2 +  4 × 1
1 x3 +   10 x4

Step 5: Simplify and calculate the coefficient for the remaining term 3. 

            À            Á                Â                  Ã               Ä

(1 + x)4 = 1
4  + 4 × 1

3 x1 +    6 × 1
2 x2 +   4 × 1

1 x3 +   x4

        Ø (4 × 3

2 ) Ú         

Simplifying:

          À      Á      Â       Ã       Ä

(1 + x)4 = 1 + 4 x + 6x
2 + 4x

3 + x
4
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30.11 Heinous Howlers

j Binomial questions seem to cause no end of problems in the exams.

j Great care must be taken in getting the signs and powers correct. Lots of marks to loose here.

j In the formula book the expansion is quoted as:

Note that 1.2 in algebra means  not 

(1 + x)n = 1 + nx +
n (n − 1)

1.2
x

2 +… +  
n (n − 1) … (n − r + 1)

1.2… r
x

r

1 × 2 1 2
10

j When substituting another term for the basic a or b in a binomial, a most common mistook is to forget
to raise the substituted terms to the correct power. The liberal use of brackets will help avoid this
particular howler.

30.11.1  Example:

Expand (1 + 3x)3

      (1 + b)3 = 1 + 3b + 3b
2 + b

3

(1 + 3x)3 = 1 + 9x + 3 × 3x
2 + 3x

3 c

The correct solution:

     (1 + 3x)3 = 1 + 3 (3x) + 3 (3x)2 + (3x)3

     (1 + 3x)3 = 1 + 9x + 27x
2 + 27x

3

j Evaluating simple fractions raised to a power also gives rise to a number of errors.

e.g. (3

x )
2

=
9

x2
  NOT  

9

x
 or 

3

x2

30.12 Some Common Expansions in C2

   (1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +… +  nx
n − 1 +  xn

   (1 + x)n = 1 + nx + n
C2 x

2 + n
C3 x

3 +… + nx
n − 1 +  xn

   (1 + x)3 = 1 + 3x + 3x
2 + x

3

   (1 − x)3 = 1 − 3x + 3x
2 − x

3

   (1 + x)4 = 1 + 4x + 6x
2 + 4x

3 + x
4

   (1 − x)4 = 1 − 2x + 6x
2 − 4x

3 + x
4

Note how the signs change. 
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30.13 Binomial Theorem Topic Digest

The Binomial theorem, where n is a positive integer:

(a + b)n = a
n +

n

1!
a

n − 1
b +

n (n − 1)
2!

a
n − 2

b
2 +

n (n − 1) (n − 2)
3!

a
n − 3

b
3 +… +  bn

(a + b)n =  an + n
C1 a

n − 1
b + n

C2 an − 2
b

2 + n
C3 a

n − 3
b

3 +… + n
Cr a

n − r
b

r +… + n
Cn − 1 ab

n − 1 + b
n

(a + b)n =  an +   na
n − 1

b +  n
C2 an − 2

b
2 + n

C3 a
n − 3

b
3 +… + n

Cr a
n − r

b
r +… +  nab

n − 1 + b
n

 n
C1 = n

Cn − 1 = n                 (n ∈ )where: N

Alternative symbology:

(a + b)n = a
n + ( ) a

n − 1
b + ( ) a

n − 2
b

2 + ( ) a
n − 3

b
3 +… + ( ) a

n − r
b

r +… + ( ) ab
n − 1 + b

nn

1

n

2

n

3

n

r

n

n − 1

(a + b)n = a
n +  na

n − 1
b + ( ) a

n − 2
b

2  + ( ) a
n − 3

b
3 +… + ( ) a

n − r
b

r +… +  nab
n − 1 + b

nn

2

n

3

n

r

 ( )  = ( ) = n              (n ∈ )where:
n

1

n

n − 1
N

Special case for (1 + x)n

(1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +… +  nx
n − 1 +  xn

(1 + x)n = 1 + nx + n
C2 x2 + n

C3 x
3 +… + nx

n − 1 +  xn

(a + b)n = ∑
n

r = 0
( ) a

n − r
b

r or (a + b)n = ∑
n

r = 0

n
Cr a

n − r
b

rn
r

Where:

      n
Cr = ( ) =

n!

r! (n − r)!
n
r

n
Cr = n

Cn − r

n
C2 = ( ) =

n (n − 1)
2 × 1

   n
C3 = ( ) =

n (n − 1) (n − 2)
3 × 2 × 1

n

2
n

3

The kth term:

= n
Ck − 1 an − k + 1

b
k − 1 or ( ) a

n − k + 1
b

k − 1n

k − 1

For the term in   or  a n − r br

= n
Cr a

n − r
b

r or ( ) a
n − r

b
rn

r

Note: the combination format, , is only valid if n & r are positive integers. For  then the full version
of the Binomial theorem is required. More of this in C4.

nCr n < 1

When n is a positive integer the series is finite and gives an exact value of  and is valid for all values of
x. The expansion terminates after  terms.

(1 + x)n

n + 1

The use of the  form for the combination symbol is simply because it is used on many calculators. Also
shown as  on some calculators.

nCr

nCr
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31.1 Trig Ratios for all Angles Intro

Prior to A level, the definitions of sine, cosine & tangent have been defined in terms of right angled triangles and
acute angles. We now use Cartesian co-ordinates to define the trig ratios of any angle, even angles greater that
360°.

31.2 Standard Angles and their Exact Trig Ratios

However, you need to be very familiar with these standard angles and their exact ratios. You should be able to
derive them in case you cannot remember them.

The trick is to use two regular triangles in which the hypotenuse is set to 1 unit. This simplifies the ratios and
makes them easy to calculate. It is a simple matter to use pythag to calculate the lengths of the other sides and
hence the trig ratios.

1 1

A

B C

D

E F G

45°

45°

60°

30°

½ ½

1

1
ú 2

1
ú 2 ú 3

2

Unit Triangles

Recall SOH CAH TOA. Hence:

sin 45 =
1

2

1
=

1

2

cos 45 =
1

2

1
=

1

2

tan 45 =
1

2

1

2

= 1

sin 60 =
3

2

1
=

3

2

cos 60 =
1
2

1
=

1

2

tan 60 =
3

2
1
2

=
3

2
×

2

1
= 3

sin 30 =
1
2

1
=

1

2

cos 30 =
3

2

1
=

3

2

tan 30 =
1
2

3
2

=
2

1
×

2

3
=

4

3
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31.3 The Unit Circle

The unit circle is a standard way of representing angles over 90°. Cartesian co-ordinates are used to define the
trig rations of any angle. The clever trick is to use a circle with a radius of 1 unit, hence the name. Once again
this simplifies the definitions of the trig functions as shown below:

The Unit Circle

 of OP

 sin θ =
O

H
=

y

1
= y

 cos θ =
A

H
=

x

1
= x

 tan θ =
O

A
=

y

x
 ≡  gradient

P (x, y)
1

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

O

y 

x (1, 0)(−1, 0)

(0, 1)

(0, −1)

Positive 

direction

Negative 

direction

Properties of the Unit Circle:

j Radius r  = 1 (always regarded as a positive value)

j Angles are measured from the positive x-axis in an anticlockwise direction

j Angles measured in a clockwise direction are said to be negative angles

j The circle is divided into 4 quadrants as seen

j Trig ratios in the first quadrant are equivalent to the definitions derived from a right angled triangle

j The x-axis represents  for all cos θ −1 ≤ cos θ ≤ 1 θ

j The y-axis represents  for all sin θ −1 ≤ sin θ ≤ 1 θ

j The coordinates of any point, P, on the unit circle are given by (cos θ, sin θ)

j  can be defined as the y-coordinate of the point Q tan θ (1, tan θ)

j  represents the gradient of the line OP and OQtan θ

j The equation of a unit circle is x2 + y2 = 1

From the unit circle trig definitions we can see:

  x = cos θ &  y = sin θ

 tan θ =
y

x
 ∴ tan θ =

sin θ
cos θ

Since

 tan θ =
OQ

OR
=

OQ

1
      ∴   tan θ = yQNote

 x2 + y2 = 1From the equation of a circle: 

        sin2 θ + cos2 θ = 1hence:

P (cos θ, sin θ)

x = cos 

1

y 
=

 s
in Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

O θ

θ

Q (1, tan θ)

R (1, 0)

It also becomes easy to deduce the sign of each trig function in each quadrant. This gives us the standard CAST
diagram:

The CAST Diagram showing the quadrants
with positive trig functions.

x = cos 

y 
=

 s
in

Q 1Q 2

Q 3 Q 4

θ

θ

C

AS

T

All +vesin +ve

tan +ve cos +ve
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Once you realise that the x-axis represents  and the y-axis  then it can be seen that trig functions for
any angle have a close relationship with angles in the 1st quadrant. 

cos θ sin θ

The diagram below summarises this:

q

P(cos θ, sin θ)P(−cos θ, sin θ)

P(−cos θ, −sin θ) P(cos θ, −sin θ)

Unit Circle with Trig Definitions

31.4 Acute Related Angles

For any angle greater than 90°, the numerical value of a trig ratio can be found by finding the related acute angle,
, between the radius OP and the x-axis. The only difficulty is getting the sign right!α

eg sin θQ2 = sin αQ2     tan θQ3 = tan αQ3     cos θQ4 = cos αQ4in Q2:    in Q3: in Q4:

P1 (cos θ, sin θ)

x = cos 

y 
=

 s
in

Q 1Q 2

O θ

θ

θQ1

θQ2

180° − θQ2  = αQ2

P2 (−cos θ, sin θ)

x = cos 

y 
=

 s
in

Q 3

O θ

θ

θQ3

θQ3 − 180°= αQ3

P3 (−cos θ, −sin θ)

y 
=

 s
in

Q 1

Q 4

O
x = cos θ

θ

θQ4

360° − θQ4  = αQ4

P4 (cos θ, −sin θ)

Acute Related Angles
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31.5 The Principal & Secondary Value

An examination of the graphs of any trig function will tell you that for any given value of the function there are
an infinite number of solutions for the angle . θ

In a typical exam question, you will be asked to solve a trig equation for all values of  in a certain range or
interval of values.

θ

However, the calculator will only give one solution for , which is called the Principal Value (PV). θ

Try this on a calculator:

  sin θ = y  θ = sin
−1 yRecall that if: then

where  means the inverse, not the reciprocal!sin−1 θ

 sin 210 = −
1

2
  θ = sin

−1 (−1

2)   θ = −30° ( PV)On the calculator: but results in The 

So why does the 210° change to −30° when processed on the calculator?

The answer is that the calculator restricts its range of outputs to a certain range of values as shown below.

[This is because we are dealing with the inverse trig functions. Inverse trig functions are dealt with properly in
C3].

90

-1

1

p/2

y = sin

y

θ−90
��-p/2

90 180

-1

1

p/2 p

θ y = cosθ

y

θ 90

-1

1

p/2

y = tan

y

θ−90
��-p/2

θ

Range of Principal Values

In solving trig equations, and depending on the trig function, the PV is restricted to these intervals:

  −
π
2

≤ sin
−1 y ≤

π
2

  − 90° ≤ sin
−1 y ≤ 90° Q1 & Q4PV for the sine function

     0 ≤ cos
−1 y ≤ π    0° ≤ cos

−1 y ≤ 180°     Q1 & Q2PV for the cosine function

   −
π
2

≤ tan
−1 y ≤

π
2

  − 90° ≤ tan
−1 y ≤ 90° Q1 & Q4PV for the tan function

Where Q1 & Q4 refer to the quadrant numbers 1 & 4 etc.

So each trig function has two solutions in each 360° interval. This first solution is the PV, and is in the first
quadrant and the second solution or secondary value (SV) is in another quadrant.
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31.6 The Unit Circle and Trig Curves

36090 180 270

-1

1

p/2 p 3p/2 2p

y = sin x

y

x

3
6
0

9
0

1
8
0

2
7
0

-1 1

y = cos x

y

x

P (cos θ, sin θ)

y = sin x

x = cos x

1

PV range

P
V

 ra
n
g
e

−90

-p/2

Sine and Cosine Graphs and the Unit Circle

1

360
90 180 270

-1

1

-90
p/2 p 3p/2

2p

45

P(cos θ, sin θ)

x = cos θ

y = sin θ

θtan

sin q
ÊÊÊÊÊ

cos q
tan θ =     =   y

ÊÊÊÊ

  x

PV range

Q (1, tan θ)

Tangent Graphs and the Unit Circle
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31.7 General Solutions to Trig Equations

31.7.1 Solutions for Sin θ
From the unit circle and sine curve we can see that:

 y = sin (θ)    − 1 ≤ y ≤ 1

    sin θ = sin (180° − θ)  Q2

& − sin θ = sin (180° + θ)  Q3

& − sin θ = sin (360° − θ)  Q4

The solutions for  follow a pattern thus:θ

θ =  … , −2π + PV , −π − PV , PV, π − PV ,  2π + PV , …

∴ θ = sin
−1 (y) + 2nπ 

& θ = −sin
−1 (y) + (2n + 1) π

where n is an integer value

31.7.2 Solutions for Cos θ
From the unit circle and cosine curve we can see that:

 x = cos (θ)

    cos θ = cos (360° − θ)  

& − cos θ = cos (360° + θ)   

& − cos θ = cos (360° − θ)

The solutions for  follow a pattern thus:θ

θ =  … , −2π + PV , −PV , PV,  2π − PV ,  2π + PV , …

∴ θ = ± cos
−1(y) + 2nπ

where n is an integer value

31.7.3 Solutions for Tan θ
From the unit circle and tan curve we can see that:

 
y

x
= tan (θ) = z

&  tan θ = tan (180° − θ)  

&  − tan θ = tan (180° + θ)  

The solutions for  follow a pattern thus:θ

θ =  … , −2π + PV , −π + PV , PV,  π + PV ,  2π + PV , …

∴ θ = ± tan
−1(z) + nπ

where n is an integer value
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31.8 Complementary and Negative Angles

31.8.1 Negative Angles

From the unit circle, 

P & P´ have the same x-coordinates but the 

y-coordinates have opposite signs.

Thus we have:

 cos (−θ) = cos θ
 sin (−θ) = −sin θ

P (cos θ, sin θ)

x 

1

O

P´ (cos (−θ), sin (−θ))

y 

P´ (cos θ, −sin θ)

31.8.2 Complementary Angles

Suppose point P´ is set at an angle of , giving

the coordinate of P´ as 

Now P´ is a reflection of P in the line  .

Since the coordinate of  P is  the reflected

coordinate of P´ is  

(90° − θ)
(cos (90° − θ) , sin (90° − θ))

x = y

(cos θ, sin θ)
(sin θ, cos θ) .

Hence we can say:

cos (90° − θ) = sin θ   or  cos (π
2

− θ) = sin θ

sin (90° − θ) = cos θ   or  sin (π
2

− θ) = cos θ

31.9 Coordinates for Angles 0°, 90°, 180° & 270°

For °, point P has the coordinates of (1, 0)θ = 0

∴ sin θ =
0

1
= 0,  cos θ =

1

1
= 1,  tan θ =

0

1
= 0

For , point P has the coordinates of (0, 1)θ = 90°

∴ sin θ =
1

1
= 1,  cos θ =

0

1
= 0,  tan θ =

1

0
= ∞ (or not def ined)

For , point P has the coordinates of (−1, 0)θ = 180°

∴ sin θ =
0

1
= 0,  cos θ =

−1

1
= −1,  tan θ =

0

−1
= 0

For , point P has the coordinates of (0, −1)θ = 270°

∴ sin θ =
−1

1
= −1,  cos θ =

0

1
= 0,  tan θ =

−1

0
= ∞ (or not def ined)
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31.10 Solving Trig Problems

These diagrams should help visualize the solutions for the three main trig ratios:

Solutions for Sine

 

 

 

 

PV = sin−1y

SV = 180 − PV

3rd = 360 + PV

4th = 360 + SV

36090 180 270

-1

1

p/2 p 3p/2 2p

y

x

PV
(180−PV)

SV 3rd 4th
(360+PV) (360+SV)

−SV−3rd
(−180−PV)(−360+PV)

−180−360

y = sin x

Solutions for Cos

 

 

 

 

PV = cos −1y

SV = 360 − PV

3rd = 360 + PV

4th = 360 + SV

36090 180 270

-1

1

p/2 p 3p/2 2p

y = cos xy

x

PV
(360−PV)

SV 3rd
(360+PV)

−PV−SV
(−360+PV)(−360−PV)

−180−360

−3rd
(360+SV)

4th

Solutions for Tan

 

 

 

 

PV = tan−1y

SV = 180 + PV

3rd = 360 + PV

4th = 360 + SV 36090 180 270

-1

1

p/2 p 3p/2 2p

y = tan xy

x

PV
(180+PV)

SV 3rd
(360+PV)

−SV
(−360+PV)

−180−360

(−180+PV)
−3rd

(360+SV)
4th
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31.11 Trig Ratios Worked Examples

31.11.1  Example:

1 Solve  for:    sin 3x = 0·5 0° ≤ x ≤ 180°

Solution:

Draw a sketch!

     

sin 3x = 0.5
3x = sin−1 (0·5)
3x = 30°    (PV)     ∴  x = 10°

3x = 180 − 30° = 150°   (SV)     ∴  x = 50°

3x = 360 + 30° = 390°   (3rd)    ∴  x = 130°

 ∴  x = 10°,  50°,  130°

36090 180 270

-1

1

p/2 p 3p/2 2p

y = sin x

y

x

PV 180 −PV

2
Solve  for:     sin

2 x = 1 −
3

2
cos x 0° ≤ x ≤ 180°

Solution:

sin
2 x = 1 −

3

2
cos x

But sin
2 x + cos

2 x = 1

∴ 1 − cos
2 x = 1 −

3

2
cos x

cos
2 x =

3

2
cos x

cos
2 x −

3

2
cos x = 0

2 cos
2 x − 3 cos x = 0

cos x (2 cos x − 3) = 0

 cos x = 0   ∴ x = 90°,  1st solution: (other solutions out of range)

      (2 cos x − 3) = 02nd solution:

    cos x =
3

2
    ∴ x = 30°,   (other solutions out of range)

3 Solve    for:   sin 2x = 3 cos 2x 0 ≤ x ≤ π

Solution:

sin 2x = 3 cos 2x

sin 2x

cos 2x
= 3 

tan 2x = 3 

2x = tan
−1 3 ⇒

π
3

 (60°) ,  
π
3

 + π,  
π
3

 + 2π ⇒
π
3

,  
4π
3

,  
7π
3

∴ x =
π
6

 ,  
2π
3

  (0 ≤ x ≤ π)
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4 Find the values of x for which  for:    2 sin (2x) + 1 = 0 0° ≤ x ≤ 180°

Solution:

180

-1

1

y = 2 sin (2x) + 1y

x

180−PV

2

3

0 90

360+PV

360

y = sin (z) 

PV

−30 180−(−30) 360+(−30)
105° 165°

210° 330°

Draw a sketch!

2 sin (2x) + 1 = 0

Let z = 2x

sin (z) = −
1

2

z = sin
−1 (−1

2)
z = −30°    (not included as a solution)

 PV ,  180 − PV ,  360 + PV  (0° ≤ x ≤ 360°)Potential solutions are:

z = 180 − (−30) ,  360 + (−30)

z = 210°,  330°

 2x = 210°,  330°Hence:

∴     x = 105°,  165°

Note that the original equations to solve was  and the roots for this curve are
shown in the diagram at .

2 sin (2x) + 1 = 0
105°,  165°

5 Find the values of x for which  for:    sin (2x − 25) = −0·799 −90° ≤ x ≤ 180°

Solution:

sin (2x − 25) = −0·799

(2x − 25) = sin
−1 (−0·799)

(2x − 25) = −53·0   (PV)

(−180 − PV) , PV ,  180 − PV ,  360 + PV  (−90° ≤ x ≤ 180°)Potential solutions are:

(2x − 25) = −180 + 53·0, −53,  180 + 53,  360 − 53

(2x − 25) = −127, −53,  233,  307

       2x = −102, −28,  258,  332

  x = −51, −14,  129,  166  − 90° ≤ x ≤ 180°
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6 Solve  for:    sin (x − 30)  + cos (x − 30) = 0 0° ≤ x ≤ 360°

Solution:

sin (x − 30) + cos (x − 30) = 0

sin (x − 30) = −cos (x − 30)

sin (x − 30)
cos (x − 30)

= −1

tan (x − 30) = −1

(x − 30) = tan
−1 (−1)

(x − 30) = −45  (PV)

 PV ,  180 + PV ,  360 + PVPotential solutions are:

         (x − 30) = −45,  135,  405Solutions are:

              x = −15,  165,  435

              x = 165,  435  0° ≤ x ≤ 360°

7 Solve for x in the interval:    0° ≤ x ≤ 540°

4 + 2 sin2 x
cos (x) − 5

= 2 cos x

Solution:

4 + 2 sin
2 x = 2 cos x (cos (x) − 5)

4 + 2 sin
2 x = 2 cos

2 x − 10cos x

 cos
2 x + sin

2 x = 1but

∴ 4 + 2 (1 − cos
2 x) = 2 cos

2 x − 10 cos x

     6 − 2 cos
2 x = 2 cos

2 x − 10 cos x

∴ 4 cos
2 x − 10 cos x − 6 = 0

∴ 2 cos
2 x − 5 cos x − 3 = 0

   (2 cos x + 1) (cos x − 3) = 0

∴ cos x = 3  (no solution since )cos x > 1

     cos x = −
1

2

 x = cos
−1 (−1

2) = 120°

 PV ,  360 − PV ,  360 + PV  (0° ≤ x ≤ 540°)Potential solutions are:

 x = 120°,  240°,  480°Hence:
EAFQLA
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31.12 Trig Ratios for all Angles Digest

Degrees Radians sin cos tan

0 0 0 1 0

30°
π
6

1

2
3

2
1
3

45°
π
4

1

2

1

2
1

60°
π
3

3

2

1

2
3

90°
π
2

1 0 AT

180° π 0 −1 0

270°
3π
2

−1 0 AT

360° 2π 0 1 0

3p
ÊÊÊÊ

 2

5p
ÊÊÊÊ

 6

3p
ÊÊÊÊ

 4

2p
ÊÊÊÊ

 3

4p
ÊÊÊÊ

 3

5p
ÊÊÊÊ

 4

7p
ÊÊÊÊ

 6

5p
ÊÊÊÊ

 3

7p
ÊÊÊÊ

 4

11p
ÊÊÊÊÊÊ

  6

p
ÊÊ

6

p
ÊÊ

4

p
ÊÊ

3

p
ÊÊ

2

2p

0
p

Relationship Between Degrees and Radians

Trig Ratio to solve

Solution cos sin tan

PV cos−1 sin−1 tan−1

SV 360 − PV 180 − PV 180 + PV

3rd 360 + PV 360 + PV 360 + PV

4th 360 + SV 360 + SV 360 + SV

5th 360 + 3rd 360 + 3rd 360 + 3rd

6th 360 + 4th 360 + 4th 360 + 4th
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32.1 Graphs of Trig Ratios

Sine Properties:

Periodic: every 360° or  radians

Hence: 

&         

Symmetric about 

∴ Sine is classed as an odd function and the

graph has rotational symmetry, order 2, about

the origin.

| sin θ | ≤ 1

2π

sin θ° = sin (θ ± 360) °

sin θ = sin (θ ± 2π)
θ = ± 90°, ± 270° etc

 sin (90 − θ) ° = sin (90 + θ) °

 sin (90 − θ) ° = cos θ°

 sin (−θ) = −sin θ
 f (−θ) = −sin θ = −f (θ)

36090 180 270

2

-2

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = sin x

Period 360° or 2p

Amplitude 

1 complete cycle

Cosine Properties:

Periodic: every 360° or  radians 

Hence: 

&         

Symmetric about 

∴ Cosine is classed as an even function and the

graph is symmetric about the y-axis.

| cos θ | ≤ 1

2π

cos θ° = cos (θ ± 360) °

cos θ = cos (θ ± 2π)
θ = 0°

 cos (90 − θ) ° = sin θ°

 cos (−θ) = cos θ
 f (−θ) = cos θ = f (θ)

36090 180 270

2

-2

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = cos x

Period 360° or 2p

Amplitude 

1 complete cycle

Tangent Properties:

Periodic: every 180° or  radians

 Hence: 

&         

Asymptotes occur at odd multiples of 90°:

or: 

i.e. 

∴ tangent is classed as an odd function and the

graph has rotational symmetry, order 2, about

the origin.

π

tan θ° = tan (θ ± 180) °

   tan θ = tan (θ ± π)
    tan (−θ) = −tan θ

   θ = (2n + 1) 90°

θ =
π
2

+ nπ

± 90°,  ± 270°,  …  

 f (−θ) = −tan θ = −f (θ)

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

Period 180° or p

45

y = tan x

Period 180° or p
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32.2 Transformation of Trig Graphs

Vertical Stretch

Scale factor = × a

 y = a sin (x)

36090 180 270

a

-a

-90-180-270-360

p/2 p 3p/2 2p

y = 2 sin x

× 2

y = sin x

× 2

Vertical translation

 y = −k +  sin (x)

36090 180 270

y

-90-180-270-360

p/2 p 3p/2 2p

y = –k + sin x

– k

– k

Horizontal translation

This means a translation to the LEFT!
 y = tan (x + ¼π)

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

45

y = tan (x+¼p)

– ¼p

Note that translating the cosine graph by 90°,
gives a sine wave. Hence:
 cos (θ − 90) ° = sin θ°

36090 180 270

-1

1

-90-180-270

p/2 p 3p/2 2p

y = cos x

Translate 90°

y = sin x
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Stretches in the x axis.

Map  to 

The graph is stretched parallel to the x-
axis with a scale factor of ½. 

Scale factor = × 

y = sin x y = sin 2x

1

a

36090 180 270

-1

1

-90-180-270

p/2 p 3p/2 2p

y = sin x y = sin 2x

Reflection in the  x axis.

Map  to y = sin x y = −sin x

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = sin x y = − sin x

32.3 Graphs of Squared Trig Functions

It is worth being familiar with the graphs for squared trig functions. Note how the curves remain in positive
territory, as you would expect when something is squared.

y = sin 2 x

y = −sin 2 x

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = sin x

y = sin  x2

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = sin x

y = −sin  x2
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y = cos 2 x

y = −cos 2 x

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = cos x

y = cos  x2

o

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = cos x

y = −cos  x2

o

y = tan 2 x

y = −tan 2 x

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

45

y = tan x

y = tan  x2

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

45

y = tan x

y = −tan  x2
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32.4 Worked Examples

32.4.1  Example:

Solve

sin 2θ = 0·8

0 ≤ θ ≤ 2π

-1

1

p/2 p 3p/2

y = sin x

2p

4p

2p

0.8

3p

Solution:

   2θ = sin
−1 (0·8)   (radian mode set)

   2θ = 0·92729       (principal value)

2πBased on the period of  for a sine function, the values are:

   2θ = 0·927,  π − 0·927,  2π + 0·927,  3π − 0·927,  4π + 0·927

0 ≤ θ ≤ 2π 2θ,   0 ≤ 2θ ≤ 4πSince the limits have been defined as then for limits are

  2θ = 0·927,  2·214,  7·210,  8·497Hence:

          θ = 0·464,  1·11,  3·61,  4·25 (2dp)
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32.5 Transformation Summary

y = a sin (bx − c) + k

affects 
Amplitude
(Vertical
stretch)

affects 
Period

(Horizontal
stretch)

affects 
Horizontal
translation

affects 
Vertical

translation

Amplitude is given by:

|a| = amplitude  tan x)(not applicable directly to

a ⇒  avertical stretch of any trig ratio by a factor of  

e.g. y = −5 sin x ⇒ 5vertical stretch by a factor of 5, a reflection in the x-axis & amplitude of 

Period is given by:

For sin & cos Period =
360°

|b|  or 
2π
|b|

e.g.   y = sin (−4x) ⇒ 90° or 
π
2

horizontal stretch by a factor of 1/4, reflection in the y-axis & a period of 

For tan    Period =
180°

|b|  or 
π
|b|

Changing a or b y = a sin bx y = a cos bx y = a tan bx

a > 1 vertical stretch, (expansion) scale factor of a

0 < a < 1 vertical stretch, (compression) scale factor of 
1

a
 y axis

a < 0 vertical stretch, scale factor of a, with reflection in the x-axis

b > 1 horizontal stretch, (compression) scale factor of 
1

b

0 < b < 1 horizontal stretch, (expansion) scale factor of b  x axis

b < 0 horizontal stretch, (compression) scale factor of , with reflection in the y-axis
1

b

Amplitude | a | =
max − min

2
Not applicable

Period
(degrees)

360°

| b |
360°

| b |
180°

| b |

Period (radians)
2π
| b |

2π
| b |

π
| b |
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33 • C2 • Trig Identities

33.1 Basic Trig Ratios

A reminder of the basic trig ratios:

    = gradient of hypotenuse

 sin θ =
opposite

hypotenuse
=

o

h

 cos θ =
adjacent

hypotenuse
=

a

h

 tan θ =
opposite

adjacent
=

o

a

Hyp
ot

en
us

e

a

h o

q

Degrees 0 30 45 60 90

Radians 0 π
6

π
4

π
3

π
2

sin 0 1
2

1
2

3
2 1

cos 1 3
2

1
2

1
2 0

tan 0 1
3

1 3 asymtote

Recall that  is written as  etc., but  means the inverse of  not the reciprocal .

Similarly for sin and tan.

(cos θ)2 cos2 θ cos−1 θ cos θ
1

cos θ

   tan θ ≡ tan (θ ± 180)

   cos θ = cos (−θ)       ∴ even

   sin (−θ) = −sin (θ)   ∴ odd

33.2 Identity tan x ≡ sin x / cos x

From the basic definitions we have:

   tan θ =
o

a
=

h sin θ
h cos θ

=
sin θ
cos θ

   tan θ ≡
sin θ
cos θ

(When ,  is not defined. i.e. when cos θ = 0 tan θ θ = (2n + 1)
π
2

33.3 Identity sin2x + cos2x ≡ 1

  a
2 + o

2 = h
2

From pythag:

    (h cos θ)2 + (h sin θ)2 = h
2

    h
2 cos

2θ + h
2 sin

2θ = h
2

    cos
2θ + sin

2θ ≡ 1

≡ means true for all values of )θ
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33.4 Solving Trig Problems with Identities

33.4.1 Problems of the form: p sin x ± q cos x = k

Division by sin or cos will render the equation in terms of tan.

33.4.1.1  Example:

1 Solve  where 4 sin θ − cos θ = 0 0° ≤ θ ≤ 180°

Solution:

 4 sin θ − cos θ = 0

 4 sin θ = cos θ

 4 
sin θ
cos θ

=
cos θ
cos θ

 4 tan θ = 1

 θ = tan
−1 

1

4

 θ = 14° (2 sf )

2

33.4.2 Problems of the form: p sin x ± q cos2 x = k

Change the equation to be in terms of sin or cos by using the identity .cos2 θ + sin2 θ ≡ 1

33.4.2.1  Example:

1 Solve  where 5 cos2 θ + 4 sin θ = 5 0 ≤ θ ≤ π

Solution:

  5 cos
2θ + 4 sin θ = 5

  5 (1 −  sin
2θ) + 4 sin θ − 5 = 0

  5 −  5 sin
2θ + 4 sin θ − 5 = 0

  −  5 sin
2θ + 4 sin θ = 0

  5 sin
2θ − 4 sin θ = 0

  sin θ (5 sin θ − 4) = 0

  sin θ = 0 or sin θ =
4

5

  θ = 0,  π,  0·93,  2·21
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33 • C2 •  Trig Identities

2 Show that  can be written as  and solve
 for .

5 tan θ sin θ = 24 5 cos2 θ + 24 sin θ − 5 = 0
5 tan θ sin θ = 24 0° ≤ θ ≤ 360°

Solution:

  5 tan θ sin θ = 24

  5 
sin θ
cos θ

 sin θ = 24

  5 sin
2 θ = 24 cos θ

  5 (1 −  cos
2θ) = 24 cos θ

  5 −  5 cos
2θ − 24 cos θ = 0

  5 cos
2θ + 24 cos θ − 5 = 0

  ( 5cos θ − 1) ( cos θ + 5) = 0

  cos θ =
1

5
 (cos θ = −5 not a valid solution)

∴  θ = 78·5°,  281·5

33.4.3 Proving Other Identities

The standard identities can be used to prove other identities. Usually proved by taking the more complex side if
the identity and manipulating it to equal the simpler side.

33.4.3.1  Example:

1 Prove the identity (sin θ − cos θ)2 + (sin θ + cos θ)2 = 2

Solution:

 LHS = (sin θ − cos θ)2 + (sin θ + cos θ)2

  = (sin
2θ − 2sin θ cos θ +  cos

2θ) + (sin
2θ + 2sin θ cos θ +  cos

2θ)

  = 2 (sin
2θ +  cos

2θ)

 (sin
2θ +  cos

2θ) = 1now

 LHS = 2

 LHS = RHS

2
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33.5 Trig Identity Digest

33.5.1 Trig Identities

     tan θ ≡
sin θ
cos θ

     sin θ ≡ cos (1

2
π − θ)  sin x = cos (90° − x)

     cos θ ≡ sin (1

2
π − θ)  cos x = sin (90° − x)

33.5.2 Pythagorean Identities

cos
2 θ + sin

2 θ ≡ 1

1 + tan
2 θ ≡ sec

2 θ

33.5.3 General Trig Solutions

j Cosine

j The principal value of  is as per your calculator where cos θ = k θ =  cos −1k

j A second solution is found at θ = 360 −  cos −1k  (θ = 2π −  cos −1k)

j Thereafter, add or subtract multiples of 360° (or )2π

j k valid only for −1 ≤ k ≤ 1

j Sine

j The principal value of  is as per your calculator where sin θ = k θ =  sin−1k

j A second solution is found at θ = 180 −  sin−1k  (θ = π −  sin−1k)

j Thereafter, add or subtract multiples of 360° (or )2π

j k valid only for −1 ≤ k ≤ 1

j Tan

j The principal value of  is as per your calculator where tan θ = k θ =  tan−1k

j A second solution is found at θ = 180 +  tan−1k  (θ = π +  tan−1k)

j Thereafter, add or subtract multiples of 360° (or )2π

j k valid for k ∈ R

j Complementary angles add up to 90°

j sin (90 − θ) = cos θ 

j cos (90 − θ) = sin θ

j tan (90 − θ) = cot θ

j Supplementary angles add up to 180°

j sin (180 − θ) = sin θ

j cos (180 − θ) = −cos θ

j tan (180 − θ) = −tan θ
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34 • C2 • Trapezium Rule

34.1 Estimating Areas Under Curves

Normally, areas under a curve are calculated by using integration, however, for functions that are really difficult
to integrate, other methods have to be used to give a good approximation.

In the syllabus there are three methods you need to know:

j The Trapezium rule − covered here

j The Mid-ordinate Rule − C3 (AQA requirement)

j Simpson’s Rule − C3

All these methods are based on the premise of dividing the area under the curve into thin strips, calculating the
area of each strip and then summing these areas together to find an overall estimate. Clearly, the more strips that
are used, the more accurate the answer, and in practise, many hundreds of strips would be chosen with results
being calculated electronically. In the exam, calculations with up to 5 ordinates may be required.

Each method has its advantages and disadvantages.

34.2 Area of a Trapezium

Recall that the area of a trapezium is given by:

where a and b are the length of the parallel sides and h

is the distance between the parallel lines of the

trapezium.

A triangle can be considered a special trapezium, with

one side length zero.

1

2
(a + b) h

a

b

h

34.3 Trapezium Rule

An approximation of the area under a curve, between two values on the x-axis, can be found by dividing up the
area into n strips, of equal length h. The lines dividing the strips are called ordinates, and for convenience are
labelled . The length of these lines represents the values of y. There are  ordinates.x0, x1, x2… xn n + 1

x

y y = f(x)

¬  ®

y0
y1 y2

y3

x0 x1 x2 x3

hhh

O

yn

xnxn−1

yn−1

h

n

a b

Trapezium Rule
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For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈
h

2
[(y0 + yn) + 2 (y1 + y2 +… + yn − 1)]

  h =
b − a

n
  n =where and number of strips

The value of the function for each ordinate is given by: 

yi = f (xi) = f (a + ih)

and where i is the ordinate number.

In simpler terms:

A ≈
2

[( ) + 2 × ]width
First + last the sum of the middle y values

To use the trapezium rule, ensure that the part of the curve of interest is either all above or all below the x-axis,
such that y is either .y > 0  OR  y < 0

34.4 Trapezium Rule Errors

Depending on the shape of the original function, the trapezium rule may over or under estimate the true value of
the area. The examples below show how the estimates may vary.

In this example, the area will be under
estimated.

x

y

y = f(x)

¬  ®

y0

y1
y2

y3

x0 x1 x2 x3

h h h

O

In this example, the area will be over estimated.

x

y
y = f(x)

¬  ®

y0

y1

y2

y3

x0 x1 x2 x3

h h h

O
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34 • C2 •  Trapezium Rule

34.5 Trapezium Rule: Worked Examples

34.5.1  Example:

1 Use the trapezium rule, with 5 ordinates, to estimate

  ∫
3

1
2x

2 + 4

Solution:
First find the value of h from the given information, then set up a table to calculate the required
values of y. Finally add the values together in the approved manner.

With 5 ordinates there are 4 strips.

h =
b − a

n
=

3 − 1

5 − 1
=

1

2

Ordinate No xi yi

0 x0 = 1 6·0

1 x1 = 1.5 8·5

2 x2 = 2 12·0

3 x3 = 2.5 16·5

4 x4 = 3 22·0

∫
3

1
2x

2 + 4 dx ≈
h

2
[(y0 + yn) + 2 (y1 + y2 +… + yn − 1)]

   ≈
1

2
×

1

2
[6 + 22 + 2 (8·5 + 12 + 16·5)]

   ≈
1

4
[28 + 74]

   ≈ 25·50 Sq units

Compare this answer with the fully integrated value which is 25·33

Hence, the trapezium rule gives a slight over estimate in this case.

2 Use the trapezium rule, with 4 intervals, to estimate

  ∫
0

−4

12

x + 6

Solution:

   h =
b − a

n
=

0 − (−4)
4

= 1

Ordinate No xi yi

0 x0 = −4 6·0

1 x1 = −3 4·0

2 x2 = −2 3·0

3 x3 = −1 2·4

4 x4 = 0 2·0

 ∫
0

−4

12

x + 6
≈

1

2
[6 + 2 + 2 (4 + 3 + 2·4)]

    ≈
1

2
[8 + 2 (9·4)] = 13·4 Sq units
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3 Use the trapezium rule, with 2 strips and width 3, to estimate

  ∫
9

3
log10 x dx

Solution:

  h =
b − a

n
=

9 − 3

2
= 3

Ordinate No xi yi

0 x0 = 3 0·477

1 x1 = 6 0·778

2 x2 = 9 0·954

  ∫
9

3
log10 x dx ≈

3

2
[0·477 + 0·954 + 2 (0·778)]

     ≈ 4·481 sq units

4 Use the trapezium rule, with 4 strips to estimate

  ∫
π
2

0
cos x dx

Solution:

  h =
b − a

n
=

π
2 − 0

4
=

π
8

Ordinate No xi yi

0 x0 = 0 1·000

1 x1 = π
8 0·924

2 x2 = π
4 0·707

3 x3 = 3π
8 0·383

4 x4 = π
2 0·000

∫
π
2

0
cos x dx ≈

π
16

[1·0 + 0·0 + 2 (0·924 + 0·707 + 0·383)]

     ≈ 0·987 sq units

NOTE: as with all things to do with integrals, you must use radians when trig functions are
discussed. The limits, in terms of , will be a strong clue here.π

34.6 Topical Tips

Exam hints: 

j Always start the counting of the ordinates from zero, in which case the last ordinate will have a
subscript value equal to the number of strips

j The number of strips is always one less that the number of ordinates. (Fence post problem!)

j Draw a sketch, even if you don’t know what the function really looks like

j Ensure that the part of the curve of interest is either all above or all below the x-axis, such that y is
either .y > 0  OR  y < 0

j Don’t use these numerical methods unless specified by the question or it is clear that no other method
is available. 

j In all other cases use the full integral methods.
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35 • C2 • Integration I
AQA C1 / C2 / OCR C2

35.1 Intro: Reversing Differentiation

Once we have found the differential of a function the question becomes, ‘can we reconstruct the original
function from the differential?’ The short answer is ‘yes’, but with a small caveat.

The process of reversing differentiation is called integration, and we find that differentiation & integration are
inverse processes.

 y = ax
n  

dy

dx
= anx

n − 1If then

To reverse the process we would have to increase the power of x by 1, and divide by this new power.

∫ anx
n − 1 dx =

anxn − 1 + 1

n − 1 + 1
= ax

n

So far so good, but if our original function included a constant term, which differentiates to zero, how are we to
reconstruct this constant. In short we can’t, unless we have some more information to hand. What we can do is
add an arbitrary constant, c, which means that integration will give us not one reconstructed function, but a
whole family of similar curves.  

 
dy

dx
= bx

n  ∫ bx
n dx =

b

n + 1
x

n + 1 + cIf then

∴ y =
b

n + 1
x

n + 1 + c

This general form of integration, where c is not defined, is called Indefinite Integration.

There is one other restriction on integrating this form of function, which is that a value of  is not allowed,
as it results in division by zero, as seen below:

n = −1

 
dy

dx
= 2x

−1  ∫ 2x
−1 dx =

2

−1 + 1
x

−1 + 1 + cIf then

  =
2

0
x

0 + c

This problem is tackled in later modules. Hence:

∫ ax
n dx =

a

n + 1
x

n + 1 + c  n ≠ −1

Of course integration can also be used to find the gradient function from a second derivative.

∫ f ″ (x)  dx = f ′ (x) + c

35.2 Integrating a Constant

In integrating a constant, consider the constant to be , hence:k = kx0

∫ kx
0 =

k

0 + 1
x

0 + 1 + c

  = kx + c 
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35.3 Integrating Multiple Terms

Using function notation; the following is true:

   
dy

dx
= f ′ (x) ± g′ (x)   y = ∫ f ′ (x) ± g′ (x)  dx = ∫ f ′ (x)  dx ± ∫ g′ (x)  dxIf then

In other words, we integrate each term individually. When integrating, you will need to put the function in the
right form. Only one constant of integration is required.

j Terms have to be written as a power function before integrating, e.g. x = x
1
2

j Brackets must be removed to provide separate terms before integrating, 
e.g. (x − 4) (x − 1) ⇒ x2 − 5x + 4

j An algebraic division must be put into the form 

e.g. 

axn + bxn − 1… c

y =
x4 + 7

x2
= x

2 + 7x
−2

j Only one constant of integration is required

35.3.1  Example:

1 Find .∫ (3x − 1)2  dx

 ∫ (3x − 1)2  dx = ∫ (9x
2 − 6x + 1)  dx

     = ∫ 9x
2 dx − ∫ 6x dx + ∫ 1 dx

     =
9

3
x

3 −
6

2
x

2 + x + c

     = 3x
3 − 3x

2 + x + c

35.4 Finding the Constant of Integration

The Constant of Integration can be found if a point on the original curve is known.

35.4.1  Example:

1 Find the equation of a curve, which passes through the point (1, 4) and which has the gradient
function of  f ′ (x) = 9x2 − 2x

  f ′ (x) = 9x
2 − 2x

  f (x) = ∫ (9x
2 − 2x)  dx

   =
9

3
x

3 −
2

2
x

2 + c

∴     f (x) = 3x
3 − x

2 + c 

x & y.    f (1) = 4 To find c, substitute the value for Since then:

  4 = 3 − 1 + c

  c = 4 − 3 + 1

  c = 2

∴  f (x) = 3x
3 − x

2 + 2The original function is: 
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35.5 The Definite Integral − Integration with Limits

By integrating between limits, we find a definite answer to the integral, rather than a generic family of curves,
and hence this is called the Definite Integral.

The symbology is:

         ∫ f ′ (x)  dx = ƒ (x) + cIf

    ∫
b

a

f ′ (x)  dx = [ƒ (x)]b
a = f (b) − f (a)then

where a = the lower limit of x

 b = the upper limit of x

dx is the operator which tells us what variable is being integrated, and which limits should be used.

35.5.1  Example:

1 Find .∫
2

0
3x

2 dx

  ∫
2

0
3x

2 dx = [x
3 + c]2

0 = [x
3 + c]2

− [x
3 + c]0

    = 8 + c − (1 + c)

    = 8 − 1 + c − c

    = 7

Note that the constant of integration, c, is cancelled out. So this is not required in definite integrals.

2 Find  and express the answer in terms of a. Deduce the value of ∫
a

1
6x

−2 dx ∫
∞

1
6x

−2 dx

Solution:

  ∫
a

1
6x

−2 dx = [−6x
−1]a

1 = −
6

x


a

1

     = −
6

a
 − −

6

1


     = 6 −
6

a

  ∫
∞

1
6x

−2 dx = 6 −
6

∞

     = 6

If   , then a = ∞
6

a
⇒ 0
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35.6 Area Under a Curve

As briefly explained in C1, integration is a way of finding the area under a curve, as well as finding the original
function from the gradient function.

Limits are nearly always used in finding the area under a curve.

35.6.1 Area between the curve and the x-axis

The area under a curve, , and the x-axis, between the limits of  is given byy = f (x) x = a,  &  x = b

y = f (x)

x

y

O ba

∫
b

a

f (x)  dx

In finding the area below the curve, the integral
returns a +ve answer if the curve is above the x-
axis, and a −ve answer if below the x-axis. 

To find the total area, you need to split the areas
into two regions and integrate separately and
finally add the areas together.

If not split, and the function is integrated over
the whole area of , some of the area will
be cancelled out.

a → b

y = f (x)

x

y

O

b
a

+

−

35.6.2 Area between the curve and the y-axis

The area under a curve, , and the y-axis, between the limits of  is given byx = g (y) y = c,  &  y = d

x = f (y)

x

y

O

d

b

∫
d

c

g (y)  dy
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35.6.3  Example:

1 Find ⌠
⌡

16

0

1

x
 dx

  ∫
16

0

1

x
 dx = ∫

16

0
x

−1
2 dx

    =




x
1
2

1
2





16

0

= [2 x]16

0 = 2 16

    = 8

2
Find the area under the curve, 
between .

Draw a sketch to clarify your thinking, for
which you will need to find the roots.

y = 4 − x2

x = 0 & x = 3
y = 4 − x2

x

y

O 2

+

−
−2 3

Solution:
The integral has to be taken in 2 parts. The positive part between  and the negative
part between . Then the areas obtained can be added together.

x = 0 & x = 2
x = 2 & x = 3

 ∫
2

0
4 − x

2 dx = 
4x −

x3

3




2

0
Area 1

      = 8 −
8

3
 − 0

      = 8 −
8

3

      =
16

3

 ∫
3

2
4 − x

2 dx = 
4x −

x3

3




3

2
Area 2

      = 12 −
27

3
 − 8 −

8

3


      = 3 − 8 +
8

3
= −5 +

8

3

      = −
7

3

 
16

3
+

7

3
=

23

3
= 7

2

3
 Total area is: square units
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3
A curve is given by 

Find the shaded area for limits of

y = 2 + x + 3

x = 1,  x = 13

x

y

y = 2 + (x+3)½

1 13

Solution:
The plan here is to re-write the equation with x as the subject, and determine the limits on the y
axis to use for integration.

   y = 2 + x + 3  (1)

   y − 2 = x + 3

   (y − 2)2 = x + 3

   x = (y − 2)2
− 3

     = y
2 − 4y + 4 − 3

   x = y
2 − 4y + 1

Set the limits:

 x = 1 y = 2 + 1 + 3 = 2 + 4From (1) when   

     y = 4

 x = 13 y = 2 + 13 + 3 = 2 + 16 From (1) when 

     y = 6

Set up the integral:

  ∫
6

4
y

2 − 4y + 1 dy = 

y3

3
−

4y2

2
+ y




6

4
= 


y3

3
− 2y

2 + y



6

4

       =


63

3
− 2 × 6

2 + 6

 −



43

3
− 2 × 4

2 + 4



       = [72 − 72 + 6] − 
64

3
− 32 + 4

       = [6] − −6
2

3


       = 12
2

3
 sq units

oecfrl
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4
The curve is given by 

Find the value of p given that the shaded area
has an area of 4 square units.

y = 1 − 2x
−1

2

x

y
y = 1 − 2x −½

p

Solution:
The first action is to determine the lower limit of the shaded area and find where the curve crosses
the x-axis. Then set up the integration and work out the value of p.

   y = 1 − 2x
−1

2  (1)

   0 = 1 −
2

x

   1 =
2

x

   x = 2

   x = 4

Set up the integral:

   ∫
p

4
 1 − 2x

−1
2 dy =




x −

2x
1
2

1
2





p

4

= [x − 4 x]p

4

       = [x − 4 x]p

4

       = [p − 4 p] − [4 − 4 4]
       = p − 4 p + 4

Give area is 4:

   4 = p − 4 p + 4

   0 = p − 4 p

   p = 4 p

   p
2 = 16p

   p = 16
oecfrl
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35.7 Compound Areas

A common question is to find the area between two curves and not just between a curve and the one of the axes.
Often there will be ancillary questions that require you to find the roots, or work out limits.

35.7.1  Example:

1
A function is given by  and has the
line  intersecting in two places, at
points P (−4, 0) and Q (2, 12). 

Find the shaded area as shown on the graph.

y = 16 − x2

y = 2x + 8

y = 16 − x2

(0, 18)

x

y

O

Q (2, 12)

P (−4, 0)

4−4

Solution:
The plan here is to find the area under the curve from , then subtract the area
under the line for the same limits. Either use integration or calculate the area of the triangle
formed.

x = −4 to x = 2

 ∫
2

−4
16 − x

2 dx −
1

2
bh = 

16x −
x3

3




2

−4
−

6 × 12

2

      = 32 −
8

3
 − −64 +

64

3
 − 36

      = 32 −
8

3
+ 64 −

64

3
− 36

      = 60 −
72

3
= 60 − 24

      = 36

An alternative method is to combine the functions in one integral

 ∫
2

−4
[(16 − x

2)  − (2x + 8 )] dx = ∫
2

−4
8 − x

2 − 2x dx

        = 
8x −

x3

3
−

2x2

2




2

−4

        = 
8x − x

2 −
x3

3




2

−4

        = 16 − 4 −
8

3
 − −32 − 16 +

64

3


        = 12 −
8

3
 − −48 +

64

3


        = 12 −
8

3
+ 48 −

64

3

        = 60 −
72

3
= 60 − 24

        = 36
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2 Find the area between the two curves, . y = 17 − x
2,  & y =

16

x2

Solution:
First, find the intersection points of the two curves to
establish the limits of integration.

Then find the area under both curves and subtract the
values. A sketch is recommended.

x

y

O

(1, 16)

(4,1)

  17 − x
2 =

16

x2

  17x
2 − x

4 = 16

  17x
2 − x

4 − 16 = 0

  x
4 − 17x

2 + 16 = 0

  (x2 − 1) (x2 − 16) = 0

  x
2 = 1 & x

2 = 16

∴  x = 1 & x = 4

∴  y = 16 & y = 1

(1,  16)  & (4,  1)  x = 1,  x = 4Intersection is therefore at and the limits for integration are 

  ∫
4

1

16

x2
 dx = ∫

4

1
16x

−2 dxCurve 1

      = [−16x
−1]4

1 = −
16

4
 − −

16

1


      = −4 + 16 = 12

  ∫
4

1
17 − x

2 dx = 
17x −

x3

3




4

1
Curve 2

       = 68 −
64

3
 − 17 −

1

3


       = 68 − 17 −
64

3
+

1

3

       = 30

            30 − 12 = 18 sq unitsArea between the 2 curves:
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35.8 More Worked Examples

35.9 Topical Tips

It is usual to state any answer in the same form as the original function in the question. If asked for an exact
answer, leave the answer in surd form or in terms of or e.π 
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Module C3
Core 3 Basic Info

Algebra and functions; Trigonometry; Differentiation and integration; Numerical Methods.

The C3 exam is 1 hour 30 minutes long and is in two sections, and worth 72 marks (75 AQA).

Section A (36 marks) 5 – 7 short questions worth at most 8 marks each. 

Section B (36 marks) 2 questions worth about 18 marks each.

OCR Grade Boundaries.
These vary from exam to exam, but in general, for C3, the approximate raw mark boundaries are:

Grade 100% A ∗ A B C

Raw marks 72 61 ± 2 54 ± 2 47 ± 3 40 ± 3

UMS % 100% 90% 80% 70% 60%

The raw marks are converted to a unified marking scheme and the UMS boundary figures are the same for all exams.
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51 • C3 • Integration: Exponential Functions Update 1 (Aug 12) 431
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54 • C3 • Your Notes 393
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C3 Assumed Basic Knowledge

Knowledge of C1 and C2 is assumed, and you may be asked to demonstrate this knowledge in C3. 

You should know the following formulae, (which are NOT included in the Formulae Book).

Graphical calculators are allowed in C3/C4.

1 Trig

     sec θ ≡
1

cos θ
 cosec θ ≡

1

sin θ
 cot θ ≡

1

tan θ

     sec
2 A ≡ 1 + tan

2 A

     cosec
2 A ≡ 1 + cot

2 A

     sin 2A ≡
2 tan A

1 + tan2 A

     cos 2A ≡
1 − tan2 A
1 + tan2 A

     tan 2A ≡
2 tan A

1 − tan2 A

     sin 2A ≡ 2 sin A cos A  {A = B  sin (A + B)}in

     cos 2A ≡ cos
2
A − sin

2
A     {A = B  cos (A + B)}in

     cos 2A ≡ 2 cos
2
A − 1  {sin

2
A = 1 − cos

2
A}

     cos 2A ≡ 1 − 2 sin
2
A   {cos

2
A = 1 − sin

2
A}

2 Differentiation and Integration

   

Function  f (x) Dif f erential dy
dx = f ′ (x)

ln x
1

x

e kx k ekx

u v u′v + u v′

u

v

u′v − u v′
v2

dy

dx
= 1 ÷

dx

dy

Function  f (x) Integral ∫ f (x) dx

xn
xn + 1

n + 1
+ c n ≠ −1

ex ex + c

e kx 1

a
e kx + c k ≠ 0

1

x
ln |x| + c

1

ax + b

1

a
 ln | ax + b | + c

 
dy

dt
=

dy

dx
×

dx

dt
Rates of change

 Vx = π ∫
b

a

y
2 dxVolume of revolution about x axis

 Vy = π ∫
b

a

x
2 dyVolume of revolution about y axis

3 Other

R = k ln (at + b)  ⇔  e
R
k  = at + b
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 Module C3

C3 Brief Syllabus

1 Algebra and Functions

j understand the terms function, domain, range, one-one function, inverse function and composition of functions

j identify the range of a given function in simple cases, and find the composition of two given functions

j determine if a given function is one-one, and find the inverse of a one-one function in simple cases

j illustrate in graphical terms the relation between a one-one function and its inverse

j use and recognise compositions of transformations of graphs, such as the relationship between the graphs of
  - See  C2 notes. Combined translations.y = ƒ (x)  & y = aƒ (x + b)

j understand the meaning of  and use relations such as  and
 in solving equations and inequalities

|x| |a| = |b| ⇔ a2 = b2

|x − a| < |b| ⇔ a − b < x < a + b

j understand the relationship between the graphs of y = ƒ (x)  & y = |ƒ (x)|
j understand the exponential & log function properties  & their graphs, including their inverse functions(ex & ln x)

j understand exponential growth and decay.

2 Trigonometry

j use the notations  to denote the inverse trig relations, and relate their graphs (for the
appropriate domains) to those of sine, cosine and tangent

sin−1x, cos−1x,  tan−1x

j understand the relationship of the sec, cosec and cotan functions to cos, sin and tan, and use properties and
graphs of all six trig functions for all angles

j use trig identities for the simplification and exact evaluation of expressions, and be familiar with the use of 

j  and sec2 A ≡ 1 + tan2 A cosec2 A ≡ 1 + cot 2 A

j the expansions of sin(A ± B), cos(A ± B) and tan(A ± B), 

j the formulae for sin 2A, cos2A and tan 2A, 

j the expression of  in the forms  and .a sin x + b cos x R sin (x ± α) R cos (x ± α)

3 Differentiation and Integration 

j use the derivatives of , together with constant multiples, sums, and differencesex & ln x

j differentiate composite functions using the chain rule

j differentiate products and quotients

j understand and use the relation 
dy
dx

= 1 ÷ dx
dy

j apply differentiation to connected rates of change (chain rule)

j integrate  and , together with constant multiples, sums, and differencesex 1
x

j integrate expressions involving a linear substitution, e.g. (3x − 1)8 , e3x + 1

j use definite integration to find a volume of revolution about one of the coordinate axes (including, for example,
the region between the curves , rotated about the x-axis.y = x2 & y = x

4 Numerical Methods

j locate approximately a root of an equation, using graphical means and/or searching for a sign-change

j understand the idea, and the notation for a sequence of approximations which converges to a root of an equation

j understand how a simple iterative formula of the form  relates to an equation being solved, and use
a given iteration, or one based on a given rearrangement of an equation, to find a root to a given degree of
accuracy (the condition for convergence is not required, but know that an iteration may fail to converge)

xn + 1 = ƒ (xn)

j carry out numerical integration of functions by means of Simpson’s rule, and mid ordinate rule.
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36 • C3 • Functions

36.1 Function Intro

Previously, we have glibly used the term ‘function’ without really defining what a function really is. You may
even recall being taught about function machines at primary school! 

A function is just a rule that we apply to a number and which generates another number as an answer.

We often talk about a ‘function of x’ which we take to mean . y = (something to do with x)

 y = x
2 + 3x + 4e.g.

We say y is a function of x, where y depends on the value of x, and so we call y the dependent variable and x
the independent variable. To find the value of y, we plug in some selected value of x into our equation and
calculate the result. We see that x is the input and y is the output.

In function terminology we replace y with f(x), where f(x) means ‘the value of our function f at the point x’.
Hence:

      y = x
2 + 3x + 4 

       ƒ (x) = x
2 + 3x + 4

x = 2 ƒ (2) = 2
2 + 3 × 2 + 4    At the point 

         = 14

        ƒ (input) = (output)

We read  f(x)  as ‘f of x’ or  f(2) as ‘f of 2’.

Note how the x in f(x) is replaced by the value of x. In fact x is acting here as a place holder. We could substitute
any symbols we like here; e.g.  .ƒ (∇) = ∇2 + 3∇ + 4

Often we use  f(x) to mean the ‘function of x’, where strictly speaking f is the function and x is the input. We can
also say that f(x) means ‘the rule of our function, f, applied to the value of x’.

To be considered a true function, our equation must give rise to one, and only one, value in the output. If the
input gives us two or more values in the output, then it is not a function (more below).

A function can also be written as:

ƒ : x |→ x
2 + 3x + 4

This can be read as ‘the function f such that x maps onto ’. In set terminology ‘:’ reads as ‘such
that’.

x2 + 3x + 4

(Check your exam board as to how they represent functions).

Although any letter could be used to represent a function, convention is that the letters used are generally
restricted to f, g and h, or their corresponding capital letters.
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36.2 Mapping Relationships, Domain & Ranges

It is difficult to really talk about functions without a little bit of set theory. You might want to review that
elsewhere, (I may put something in the appendices later).

A relation is a pair of two numbers (ordered pairs), connected via the function, like the x & y co-ordinates of a
graph.

There are four types of relationship to consider, and these are illustrated below, using some simple Venn
diagrams. These relationships are:

j Relationships that are functions

j One to one relationship: where one value in the domain maps to one and only one value in the
range. An inverse relationship also exists.

j Many to one relationship: where more than one value in the domain maps to one and only one
value in the range. No inverse relationship exists, (except in cases
where the domain is restricted).

j Relationships that are NOT functions

j One to many relationship: where one value in the domain maps to more than one value in the
range. 

j Many to many relationship: where more than one value in the domain maps to more than one 
value in the range.

A function is just a special sort of relation. In function terminology we talk about functions that map a set of
input values to a set of output values. 

For any function, the set of values that the input is allowed to take is called the domain of the function, and the
output is the range of the function. 

ƒ (domain) = (range)

Note the terminology: The domain is all the input values, the co-domain is all the possible values that could be
mapped to, and the range is the actual output values. The range is a subset of the co-domain. Each element of the
domain maps to an image in the range. The images are also called the image set. 

One to one relationship: 

showing that one element in the domain
maps to one element in the range or
image set.  

We can say that ‘4 is the image of 2
under f’

Domain: 
Range: 

This is a function.

x ∈ {2,  3,  4,  5}
f (x) ∈ {4,  6,  8,  10} Domain

(Input)
Co-domain

Range

(Output)

f

x f(x)

Image set

2

3

4

5

f(x) = 2x

4

6

8

10

5

7

9

Many to one relationship:

Two or more elements of the domain map
to one element in the range.

Domain: 
Range: 

This is a function.

x ∈ {−4, −3, −2,  2,  3,  4}
f (x) ∈ {4,  9,  16}

Domain

(Input)

Range

(Output)

f

x f(x)

2
−2

3

4

9

16

f(x) = x 2

−3

−4
4
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One to many relationship:

One element of the domain maps to two
or more elements in the range.

This is NOT a function, (although x is a
function of y).

(This type of relationship is very
important in database design).

Domain

(Input)

Range

(Output)

x y

2

3

4

9

16

y = x2

4

−4

−9

−16

Many to many relationship: 

Two or more elements of the domain map
to two or more elements in the range.

This is NOT a function.

Domain

(Input)

Range

(Output)

x y

2

−2 4

9

3

−4

−9

y + x = 12 2

−3

In the diagrams above, the domains have been artificially restricted for the sake of clarity, but in reality we use a
much larger sets of numbers, usually the set of all real numbers. The following table summarises some of the
standard sets used and their notation:

Domain  Notation Range

Notation

Meaning

x ∈ R f (x) ∈ R x or f(x) is a member of the set of all real numbers

{x : x ∈ , x ≠ 2}R

x ∈ , x ≠ 2R

{f (x) : f (x) ∈ , f (x) ≠ 2}R

f (x) ∈ , f (x) ≠ 2R

Read this as ‘The set of values such that x or f(x)

belongs to R and is not 2’.

The ‘:’ is read as ‘such that’.

A simpler alternative notation.

y ∈ ,  2 ≤ y < 4R y is a real number, and greater or equal to 2 and

less than 4.

If no domain is specified assume the largest set available, usually .x ∈ R

Domains can be restricted to anything we want or need, but some restrictions are imposed just from a purely
algebraic point of view.

Division by zero.

 Since division by zero is not possible, any equation that is a quotient (fraction), must exclude values of x which
make the denominator zero.

 f (x) =
5

6 − x
  {x : x ∈ , x ≠ 6}E.g. has a domain of R

Even Roots

Even roots of −ve real numbers cannot be evaluated, so the domain of any function must exclude these values.

 f (x) = 5x − 3 {x : x ∈ , x ≥
3

5}E.g. has a domain of R

     5x − 3 ≥ 0 x)(Make & solve for 
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36.3 Vertical Line Test for a Function

The Vertical Line test is a relatively simple test to see if a graph is a function or not. 

Draw a series of vertical lines on the chart and if any one of the vertical lines crosses the curve at more than one
place, then the equation is not a function.

The curve is only a function if every element in the domain is mapped to one and only one element in the range,
in which case the vertical line will cross the curve only once.

In this example of , each vertical line
crosses the curve twice, hence each value of x
gives two values for y. 

Domain: 
Range: 

Therefore, this is not a function of x, (although
x is a function of y).

y2 = x

x ∈ R,  x ≥ 0
f (x) ∈ R,

x

y

y2 = x

R
a

n
g

e

Domain

The equation of a circle is not a function.

Domain: 
Range: 

x ∈ R, −2 ≤ x ≤ 2
f (x) ∈ R, −2 ≤ y ≤ 2

-2 -1 1 2 3

y2 + x2 = 4

x

y

Domain

R
a
n
g
e

In this example,  can be seen to fail
the vertical line test. As illustrated, this is NOT
a function of x.

Domain: 
Range: 

Restricting the range will ensure it can be
regarded as a inverse function (see later). 

y =  sin−1x

x ∈ R, −1 ≤ x ≤ 1
f (x) ∈ R

y

x
Domain

R
a
n
g
e

y = sin−1 x

-1 1
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With the function , at first site this
appears to pass the test, but when x = 0, the
equation is not determined.

If we exclude the value for x = 0, then this can
be considered as a function. 

Domain: 
Range: 

y = x−1

x ∈ R,  x ≠ 0
f (x) ∈ R,  f (x) ≠ 0

-3 -2 -1 1 2 3

y = x −1

x

y

Domain

R
a

n
g

e

Finally, . 

This passes the vertical line test and is a
function.

Domain: 
Range: 

y = x3

x ∈ R
f (x) ∈ R

x

y

y = x3

R
a

n
g

e

Domain
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36.4 Compound or Composite Functions

Composite Functions are a bit like Russian dolls, with one doll inside another. They describe the combined
effect of two of more functions that are done in order, one after the other. This is not the same as functions being
multiplied together.

The function , often referred to as a function of a function. and is read as ‘g of f of x’ which means do f(x)
first, then g(x) second, by substituting f(x) into g(x). Note that since f(x) is done first, it is written closer to (x)
than the g.

gf (x)

For gf to exist, the range of f must be a subset of the domain of g.

Composite functions can be written in a number of ways:

gf (x) = g (f (x)) = (g � f ) (x)

f

x f(x)

g

gf(x)

gf

Domain
of f

Domain
of g

Range
of f

Range
of g

=

Function of a Function

One important result about composite functions is that generally:

gf (x) ≠ f g (x)

A composite function ghf(x), with three functions of x, is shown. f(x) is the first, h(x) is 2nd, and g(x) is 3rd.

f

x f(x)

g

ghf(x)

ghf

h

h(x)

Domain
of f

Range
of ghf

Function of a Function of a Function
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36.4.1  Example:

1 Evaluate  when:f g (x)  & gf (x)

f (x) = cos x g (x) = x
2 + 3x − 1

Solution:

f g (x) = f (x2 + 3x − 1)

  = cos (x2 + 3x − 1)

gf (x) = g (cos x)

  = (cos x)2 + 3 (cos x) − 1

2 If , evaluate ff(x) = 8f (x) = 2x + 8,     x ∈ R

Solution:

f f (x) = 8

f (2x + 8) = 8

2 (2x + 8) + 8 = 8

4x + 16 = 0

x = −4

3 If , , . Evaluate hgf(3)f (x) = 1 − 2x,     x ∈ R g (x) = x2 + 5 h (x) =
x + 6

2

Solution:

f (3) = 1 − 2 × 3 = −5

g (−5) = (−5)2 + 5 = 30

h (30) =
30 + 6

2
= 18

4 If , and , find the domain of fg(x).f (x) = x2 − 9 g (x) = 9 − x2

Solution:

f g (x) = f (g (x))

  = f ( 9 − x2)

  = ( 9 − x2)2

− 9

  = 9 − x
2 − 9

  = −x
2

f (x) = x ∈ RDomain of 

9 − x
2 ≥ 0 Now to avoid a −ve square root

⇒  −x
2 ≥ −9 ⇒  x

2 ≤ 9 ⇒  x ≤ ±3

∴ g (x) = −3 ≤ x ≤ 3Domain of 

∴ f g (x) = −3 ≤ x ≤ 3Domain of 
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36.5 Inverse Functions

Inverse functions are written as  (not to be confused with the reciprocal of a function).f −1 (x)

An inverse function is one that is reversible (one undoes the other) in that the range of f(x) acts as the domain of
, and the range of  equals the domain of f(x).f −1 (x) f −1 (x)

f

x f(x)

2

3

4

f(x) = 2x

4

6

8

Domain

of f

Domain

of

Range

of f

Range

of

2

3

4

4

6

8

 f−1 = x/2

 f−1 f−1

Inverse Function

We can therefore write:

y = f (x)  ⇒  x = f
−1 (y)

E.g. In simple terms, a function such as  means multiply x
by 3 and subtract 2. The inverse means add 2 and divide by 3. 

f (x) = 3x − 2

x → → → 3x − 2×3 −2

x ← ← ←   ↵÷3 +2

It should be clear that for an inverse to exist the function needs to have a ‘one to one’ relationship. 
A ‘many to one’ function would have a ‘one to many’ inverse relationship, which is not a function. However, if
the domain is restricted, then a ‘many to one’ function can be changed to a ‘one to one’ function. 

E.g. The function  is a ‘many to one’ function. Restricting the
functions domain to  then the inverse can be found as

f (x) = 4x2

x ∈ R,  x ≥ 0

f
−1 (x) = 2 x  

Note that  means take the +ve square roots.     

A ‘self inverse’ function is one that is its own inverse, such that .f (x) = f −1 (x)

In general we find that if:

f f
−1 (x) = f

−1
f (x) = x

the function is self inverse. So finding  should determine if the function is self inverse.f f (x)

Reciprocal functions are self inverse.
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To find the inverse of a function, use this procedure:

j Replace f(x) with y

j Make x the subject of the equation

j Swop x and y, since their roles are reversed when taking the inverse function

j Replace y with f −1 (x)

36.5.3  Example:

1 Find the inverse of f (x) =
1

4 − 3x

Solution:

   y =
1

4 − 3x
    Make x the subject

   4 − 3x =
1

y
    cross multiply

   − 3x =
1

y
− 4

   3x = 4 −
1

y
    × −1

     x =
1

3 (4 −
1

y )
     y =

1

3 (4 −
1

x )     x & yreverse

∴  f
−1 (x) =

1

3 (4 −
1

x )
2 Find the inverse of f (x) = 4 − x

Solution:
Domain of  is:

Domain is 

f (x) = 4 − x

 4 − x ≥ 0
 − x ≥ −4
        x ≤ 4

x ≤ 4
x

y
y = (4 − x)½

4O

2

   y = 4 − x

   y
2 = 4 − x

   x = 4 − y
2

   y = 4 − x
2    x & yreverse

   f
−1 (x) = 4 − x

2

f (x) : x ∈ R,  x ≤ 0 ⇒  f (x) : x ∈ R,  x ≥ 0Domain of Range of   

f (x) : x ∈ R,  x ≥ 0 ⇒  f
−1 (x) : x ∈ R,  x ≥ 0Range of   Domain of 

f
−1 (x) : x ∈ R,  x ≤ 0Range of 
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3 Find the inverse of  and show that it is self inverse.f (x) = 4 − x2 x ∈ R,  0 ≤ x ≤ 2

Solution 1:
   

   y = 4 − x2

   y
2 = 4 − x

2

   x
2 = 4 − y

2

   y
2 = 4 − x

2    x & yreverse

   y = 4 − x2

∴    f −1 (x) = 4 − x2

     f (x) = f
−1 (x)          Since the function is self inverse.

Solution 2:
Find the value of  and test to see if  f f (x) f f (x) = x

   f (x) = 4 − x2

 ∴   f f (x) = 4 − ( 4 − x2)2 

    = 4 − (4 − x2) 

    = 4 − 4 + x2

    = x2

    = x    ∴  the function is self inverse.

4 Show that the function  is self inverse.f (x) =
x

x − 1
 x ∈ R,  x ≠ 1

Solution:
The function is self inverse if the value of the function for a given value of x, is the same when the
function is applied to that answer.

 x = 4 ( )Let say

∴ f (4) =
4

4 − 1
=

4

3

f (4)Apply the function to the answer for 

∴ f (4

3) =
4
3

4
3 − 1

=
4
3
1
3

      =
4

3
×

3

1
= 4

∴ f (4) =
4

3
 & f (4

3) = 4

Hence the function is self inverse
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36.6 Horizontal Line Test for an Inverse Function

The Horizontal Line test is another simple test, this time to see if a graph has a one to one relationship, and hence
find if it has an inverse function or not. 

In a similar manner to the vertical line test, draw a series of horizontal lines on the chart and if any one of the
horizontal lines crosses the curve at more than one place, then the equation is a ‘many to one’, or even a ‘many
to many’ relationship.

The curve is only a one to one function if only one element in the domain is mapped to one, and only one,
element in the range, in which case the horizontal line will cross the curve only once.

x

y

y = x2

R
a

n
g

e

DomainO

Horizontal Line Test, showing a �Many to One� relationship
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36.7 Graphing Inverse Functions

In graphical terms, the role of x and y are reversed, and a reflection is the line  is created.y = x

A ‘self inverse’ function is its own reflection in the line .y = x

On a practical note, the x and y axes should have the same scales and the  line should be at a 45° angle,
otherwise the image may look distorted. 

y = x

Asymptotes are also reflected

For every point (a, b) on the function curve,

there is a corresponding point (b, a) on the

inverse function curve.

x

y

y = f(x)

y = x
y = f−1(x)

(a, b)

(b, a)

The standard trig functions can be made into
one to one functions by restricting the domain.

The inverse can then be found.

For 

Restricted Domain: 

Range: 

(More later)

f −1 (x) = sin−1x

−1 ≤ x ≤ 1

−
π
2

≤ sin
−1 ≤

π
2

−1 1

p/2
y

-p/2

y = sin−1 x

x
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36.8 Odd, Even & Periodic Functions

The concept of odd and even functions is all about the symmetry of the function.

j The function and graph is said to be ‘even’ if it is symmetrical about the y-axis and:

f (−x) = f (x)

(This is a transformation with a reflection in the y-axis).

j The function and graph is said to be ‘odd’ if it has rotational symmetry, order 2, (180° rotation) about
the origin and:

f (−x) = −f (x)

  f (x) = −f (−x)   or

(This is equivalent to two transformations with a reflection in both the x-axis and y-axis).

j Many functions are neither odd nor even.

Type of Function Symmetry Algebraic

Definition

Case study

Even Line symmetry about

the y-axis.

example:               

                 

f (−x) = f (x)

(−a)even = (a)even

x

y

y = x2

Odd Rotational symmetry

about the origin.

Hence, must go

through origin to be

ODD.

example:               

f (−x) = −f (x)

(−a)odd = − (a)odd
x

y

y = x3

Even & Odd Both types of

symmetry.

f (x) = 0 Only example of both

Not even or odd No symmetry. N/A

x

y

y = (x+1)(x+4)
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36.9 Functions: Worked Examples

36.9.1  Example:

1 Find the inverse of  . Calculate the co-ordinates of the points of

intersection of .

f (x) =
4x + 3

x + 2
 x ∈ R,  x > −2

f (x)  & f −1 (x)

Solution:

   y =
4x + 3

x + 2
    Make x the subject

   y (x + 2) = 4x + 3

   xy + 2y = 4x + 3

   xy − 4x = 3 − 2y

   x (y − 4) = 3 − 2y

   x =
3 − 2y

y − 4
     x & yreverse

∴   y =
3 − 2x

x − 4

∴   f
−1 (x) =

3 − 2x

x − 4

The intersection of  occurs on the line y = x, hence solve for:f (x)  & f −1 (x)

   y =
3 − 2x

x − 4
 & y = x

   x =
3 − 2x

x − 4

   x (x − 4) = 3 − 2x

   x
2 − 4x + 2x − 3 = 0

   x
2 − 2x − 3 = 0

   (x − 3) (x + 1) = 0

∴ (3,  3)  & (−1, −1)co-ordinates are

2
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3
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36.10 Heinous Howlers

The notation for the inverse function can be easily confused with the notation for a reciprocal function.

Note the following:

f
−1 (x)   f (x)is the inverse of 

cos
−1 (x)   cos (x)is the inverse of 

     x
−1 =

1

x
 (The reciprocals)

(cos x)−1 =
1

cos x

[f (x)]−1
=

1

f (x)

Take care in substituting the values for x:

1 Give that , evaluate f(x + a).f (x) =
1

1 − 3x

  f (x + a) ≠
1

1 − 3x
+ a   c

f (x + a) =
1

1 − 3 (x + a)
     b
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37.1 The Modulus Function

The Modulus Function has the symbol , and is called the ‘modulus of x’, the ‘absolute value of x’ or more
generally the ‘magnitude of x’. The modulus disregards the sign of the function, and is always positive. 

| x |

We are now only interested in the size of the function, not the sign.  On the calculator it is labelled ‘Abs’.

The definition is:

| x | =
















x for all real x ≥ 0

−x for all real x < 0

E.g.   | x | = x

| –x | = x

 is always positive or zero hence:| f (x)  |
 when  is +ve| f (x)  | = f (x) f (x)

 when  is −ve| f (x)  | = −f (x) f (x)

This short hand way of representing numbers means that we can express the difference between two numbers,
without saying which number is the larger one.

Hence: is the same, whether  or  or even when | Q − q |  Q > q q > Q Q = q

Illustrated on a number line thus:

q Q

 |Q − q|

     x2 = xIf x is +ve

     x2 = −xIf x is −ve

     | x | = x2so from the definition
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37.2 Graphing y = f (x)
A graph of  is plotted in the same way as , except that any values below the x-axis are
reflected in the x-axis.

y = | f (x)| y = f (x)

x

y

y = 2x + 1

x

y

y = |2x + 1|

–½

x

y

y = |2x − 1|

½
x

y

y = 2x − 1

From the above, it can be seen that the modulus function  is always a positive quantity or zero.| f (x)|
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37.3 Graphing y = f (¾x¾)
In the case of  we find that because  then  will have the same values irrespective of the
sign of x.

y = ƒ (¾x¾) ¾x¾ = ¾–x¾ ƒ¾x¾

This means that  is symmetrical about the y-axis, and hence it is an even function.y = ƒ (¾x¾)
 when y = ƒ (¾x¾) = f (x) x ≥ 0

 when y = ƒ (¾x¾) = f (−x) x < 0

From the section on transformations recall that  is a reflection in the y-axis.f (−x)

x

y

y = 2¾x¾− 1

−1

x

y

y = 2x − 1

x

y

y = f(¾x¾)

x

y

y = f(x)

37.3.1 Summary

Sketching  y = | f (x)|
j Sketch y = f (x)

j Any part of  that is below the x-axis is reflected in the x-axis.y = f (x)

  y = ƒ (¾x¾)Sketching 

j Sketch y = f (x)

j Any part of  that is to the right of the y-axis is reflected in the y-axis.y = f (x)
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37.4 Inequalities and the Modulus Function

Inequalities such as:  can be written as −2 < x < 2 ¾x¾ < 2

         and:  can be written as −5 ≤ x ≤ 5 ¾x¾ ≤ 5

In other words:

¾x¾ < a    ⇔   − a < x < a

(Note that we don’t write:  )−a > x > a

We can also say:

        | x − k | ≤ a ⇔  k − a < x < k + a

       | a | = | b |      ⇔  a
2 = b

2
and 

E.g. If  to 1 dp, what is the range of values for x?x = 6.2

6.15 6.25

|x − 6.2| Æ 0.05

6.2

x

  | x − 6·2 | ≤ 0·05   ⇔   6·2 − 0·05 < x < 6·2 + 0·05

       ⇔   6·15 < x < 6·25

37.5 Algebraic Properties

A summary of the algebraic properties:

    | a × b | = | a | × | b |

     | ab | =
| a |
| b |

but:

    | a + b | ≠ | a | + | b |
    | a − b | ≠ | a | − | b |

37.6 Solving Equations Involving the Modulus Function

There are a number of ways of solving equations involving the modulus function:

j Critical values

j Squaring

j Graphing

j Geometrical

In solving these types of question, it is always advisable to draw a sketch.

330 ALevelNotesv8Erm 07-Apr-2013



37 • C3 •  Modulus Function & Inequalities

37.7 Solving Modulus Equations by Critical Values

37.7.1  Example:

1 Solve for x:

| x − 4 | < 5

Solution:

 (x − 4) = 0 ⇒  ∴ x = 4  y = 0Let: when line crosses the x-axis. i.e. when 

x < 4  − (x − 4) = 5 ⇒  x = −1Critical value when  is

x ≥ 4        (x − 4) = 5 ⇒  x = 9Critical value when  is

∴  | x − 4 | < 5  − 1 < x < 9when

2 Solve for x:

| 2x + 1 | ≤ 3

Solution:

 (2x + 1) = 0 ⇒  ∴ x = −½  y = 0Let:  i.e. when 

x < −½  − (2x + 1) = 3 ⇒  x = −2Critical value when  is

x ≥ −½        (2x + 1) = 3 ⇒  x = 1Critical value when  is

∴  | 2x + 1| ≤ 3  − 2 ≤ x ≤ 1when

3 Solve for x:

4 − | 2x | = x

Solution:
This equivalent to solving where  and  intersect.4 − | 2x | y = x

 4 − 2x = x ⇒  x =
4

3
Solve

 4 + 2x = x ⇒  x = − 4Solve

∴   4 − | 2x | = x  x = − 4  x =
4

3
when or

331



My A Level Maths Notes

37.8 Squares & Square Roots Involving the Modulus Function

For any value of x,  will always be a positive number.x2

Mathematically we write:

x ∈ R  x
2 ≥ 0then

E.g. (−9)2 = 81

From the algebraic rules we find that:

      | a × b | = | a | × | b |

  ∴       | a2 | = | a |2 = a
2

Taking the square root:

     a2 = | a |

x ≥ 0  a2 = xIf then

x < 0  a2 = −xIf then

37.8.2  Example:

1 Solve for x:

| x − 3 | = | 3x − 1 |
Solution:

(x − 3)2 = (3x − 1)2     Square both sides

x
2 − 6x + 9 = 9x

2 − 6x + 1

8x
2 − 8 = 0

8 (x + 1) (x − 1) = 0

x = −1 or x = 1

Note: only true for  or = | g (x)|| f (x)| < | g (x)|| f (x)|

2 Solve for x:

| x − 4 | = 5

Solution:

(x − 4)2 = 25     Square both sides

x
2 − 8x + 16 = 25

x
2 − 8x − 9 = 0

(x + 1) (x − 9) = 0

x = −1 or x = 9
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3 Solve for x:

| 2x + 1 | ≤ 3

Solution:

(2x + 1)2 ≤ 9

4x
2 + 4x + 1 − 9 ≤ 0

4x
2 + 4x − 8 ≤ 0

4 (x2 + x − 2) ≤ 0

4 (x + 2) (x − 1) ≤ 0

 x = −2,  x = 1Critical values:

−2 ≤ x ≤ 1

4 A function is defined as:

f (x) = (x + 2) (x − 4)

| f (x)  | = 8Solve: 

Solution:

| f (x)  | = ±8

(x + 2) (x − 4) = −8

x
2 − 2x − 8 = −8

x
2 − 2x = 0

x (x − 2) = 0

x = 0,  x = 2

(x + 2) (x − 4) = 8

x
2 − 2x − 8 = 8

x
2 − 2x − 16 = 0

(x − 1)2
− 1 − 16 = 0

(x − 1)2 = 17

x − 1 = ± 17

x = 1 ± 17

x = −3·12,  x = 5·12

Use a diagram to sketch the
layout. y

x2 4–2

8
y = 8 

y = −(x2 – 2x – 8)

y = x2 – 2x – 8
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5 Solve for x:

4 − | 2x | = x

Solution:
Rearrange to keep the modulus on the LHS, then square both sides.

| 2x | = 4 − x

(2x)2 = (4 − x)2

4x
2 = 16 − 8x + x

2

3x
2 + 8x − 16 = 0   ⇒  (x −

4

3) (x +
12

3 ) = 0

(3x − 4) (x + 4) = 0

x = − 4  x =
4

3
or

37.9 Solving Modulus Equations by Graphing

37.9.1  Example:

1 Solve for x:

y = x + 2  y = | x2 − 4 |and

Solution:
Drawing a graph of the equations to aid
the metal picture:

Solve the following equations:

(A)

and

(B)

x + 2 = x2 − 4

x + 2 = − (x2 − 4)

y

x1 2 3 4–1–2

A

B

2

4

y = (x2 – 4)

y = x + 2 

y = −(x2 – 4)

A x + 2 = x
2 − 4At point 

     x2 − x − 2 − 4 = 0

     x2 − x − 6 = 0

   (x − 3) (x + 2) = 0

 x = 3Since A is +ve

B x + 2 = − (x2 − 4)At point 

     x2 + x + 2 − 4 = 0

     x2 + x − 2 = 0

   (x + 2) (x − 1) = 0

 x = 1Since B is +ve
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2 Solve for x:

| 2x + 1 | ≤ 3

Solution:
Drawing a graph of 

 

and  gives a visual representation
of the inequality.

y = | 2x + 1 |

y = 3

−2 ≤ x ≤ 1

x

y

y = |2x + 1|

–½

 1

 1–2

y = 3

37.10 Solving Modulus Equations by Geometric Methods

37.10.1  Example:

1 Solve for x:

| x − 4 | = 5

Solution:

 represents the distance of x from 4.| x − 4 |

∴ | x − 4 | = 5  x − 4 = ±5 ⇒  x = 4 ± 5then

∴ x = −1,  or x = 9

2
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37.11 Heinous Howlers

In trying to solve a problem like:

| x − 3 | + | 3x − 1 | = 0

You cannot move the right hand modulus to the other side of the equals sign, and so:

| x − 3 | ≠ −| 3x − 1 |
(See algebraic rules)

This is because we don’t know if x is negative or positive.

You can only multiply or divide.

37.12 Modulus Function Digest

37.12.1 Gradient not defined

One obvious feature of any graph of a modulus function are the sharp corners generated by the function. These

sharp points do not have a tangent and so  is meaningless and has no solution.
dy
dx

Nevertheless, these sharp points may still represent turning points of some sort, such as a max or min. Hence, we

can say that any turning point occurs when either  or where  is not defined.
dy
dx

= 0
dy
dx
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38.1 Exponential Functions

Recall from C2, that Exponential functions have the following properties:

2.01.51.00.50.0−0.5−1.0

1

2

3

4

5

6

7

8

y=10x

y=ex

y=2x

y=3x

1.00.50.0−0.5−1.0

1

2

3

4

5

6

7

8

y=10−x

y=e−x

y=2−x

y=3−x

−1.5−2.0

y y

xx

a > 1

y = a−x y = ax

(0, 1)

Graphs for  and , all with y = ax y = a�x a > 1

j An exponential function has the form:
    f (x) = ax  y = ax .or where a is the base and is a positive constant

j The value of a is restricted to  and a > 0 a ≠ 1

j Note that when ,  , and when , , hence the restrictions abovea = 0 ax = 0 a = 1 ax = 1

j The function is not defined for negative values of a. (e.g.  )−10·5 ≡ −1

j All exponential graphs have similar shapes

j All graphs of  and  pass through co-ordinates (0, 1)y = ax y = a−x

j Graphs pass through the point (1, b) where b is the base

j The larger the value of a, the steeper the curve

j Graphs with a negative exponent are mirror images of the positive ones, being reflected in the y-axis 

j For  and +ve x, the gradient is always increasing and we have exponential growth
For  and −ve x, the gradient is always decreasing and we have exponential decay
For  and +ve x, the gradient is always decreasing and we have exponential decay

a > 1
a > 1
0 < a < 1

j For +ve values of x, the gradient is always increasing as x increases, i.e. the rate of change increases
(exponential growth)

j The x-axis of a exponential graph is an asymptote to the curve hence:

j The value of y never reaches zero 

j and is always positive

j For exponential graphs, the gradient divided by its y value is a constant

j Recall that , for +ve values of a, and that a0 = 1 a
−3 ≡

1

a3

       x → +∞ ⇒ y → +∞For y = a
x

       x → −∞ ⇒ y → 0

    x → +∞ ⇒ y → 0For y = a
−x

       x → −∞ ⇒ y → +∞
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38.2 THE Exponential Function: e

Whereas  is an exponential function, there is one special case which we call THE exponential function.ax

By adjusting the value of the base a, we can make the gradient at the co-ordinate (0, 1) anything we want. If the
gradient at (0, 1) is adjusted to 1 then our base, a, is found to be  2·71828…

The function is then written as:

y = e
x e = 2·718281828 (9 dp)where 

Like the number for , e is an irrational number and never repeats, even though the first few digits may look as
though they make a recurring pattern.

π

THE exponential function can also be found from the exponential series:

e
x = 1 + x +

x2

2
+

x3

6
+… + 

xn

n!
+…

To find the value of e, set :x = 1

e = 1 + 1 +
1

2
+

1

6
+… + 

1

n!
+…

2.01.51.00.50.0−0.5−1.0

1

2

3

4

5

6

7

8

y = ex

y = 2x

y = 5x

y

x

a > 1

y = ax

d(2x)

dx

d(5x)

dx

d(ex)

dx

Exponential Gradient Functions

In the illustration above, the gradient function of  and  are shown (dotted lines). The value of e is
chosen such that the gradient function of  is the same as the original function. 
Therefore, in exponential graphs, the gradient divided by the y value (dy/dx ÷ y) is a constant. For ex this value is

1, and we find that the gradient at any point is equal to y. Hence .

y = 2x y = 5x

y = ex

dy
dx

= ex

dy / dx

y
= 1 ⇒        

dy

dx
= y

    y = e
x ⇒  ∴  

dy

dx
= e

x   but
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38.3 Natural Logs: ln x

The functions  and  are inverse functions, i.e. the processes are reversible — one undoes the
other. 

y = ax y = loga x

y = 3
x ⇔ x = log3 y

The exponential function,  is the basis for natural logs, written  or y = ex loge ln

y = e
x ⇔ x = loge y

y = e
x ⇔ x = ln y    

Recall that ln 1 = 0,  ln e = 1

The natural log is used extensively in calculus, because the differential of  is .  Differentiating logs to other
bases is more complicated.

ex ex

Note that all log functions are undefined for
 and therefore have a domain of 

When x equals the base of the log,  

i.e. 

 x ≤ 0 x > 0

y = 1

logx x = 1

loge e = 1 ∴   ln e = 1

x

y

y = ln(x)

(1, 0)

1

e

From the definition of the log we have:

      ln ex = x ln e

       = x loge e

       = x × 1

   ∴      ln ex = x

       eln x = x
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38.4 Graphs of ex and ln x

As with other inverse functions these two functions, when plotted, are mirror images of each other in the line
.y = x

x

y

1

y = ln(x)

1

y = x

y = ex

j The gradient of  at any point is equal to y.
 i.e. at  , the gradient is 

y = ex

y = e3 e3

j At the point (0, 1), the gradient of  is 1y = ex

j ln (1) = 0

j Domain = set of values that x can take (input)
Range =  set of values that y can take (output)

j Domain of  is in the range of , i.e. all the real numbers:   R
Range of  is in the domain of , i.e. all the +ve numbers:   R, y > 0

ex ln x x ∈
ex ln x y ∈

j Domain of  is in the range of , i.e. all the +ve numbers:   R, x > 0
Range of  is in the domain of , i.e. all the real numbers:   R

ln x ex x ∈
ln x ex y ∈

j The graph of  shows that you cannot have the ln of a −ve numberln x
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38.5 Graph Transformations of The Exponential Function

Some transformations showing 

y = e
x ⇒ y = e

4x  y = e
x ⇒ y = 4e

x

y = e
x ⇒ y = e

−x  y = e
x ⇒ y = −e

x

y = e
x ⇒ y = 4e

x − 3  y = e
x ⇒ y = 4e

x
2 − 3

y = ex

x

y

1

2

4

−2 2
x

y

1

−2

2

4

−4 −2 2

x

y

1

2

4

−4 −2 2

y = e4x

y = exy = ex

x

y

1

2

4

−4 −2 2

y = ex

y = 4ex

y = e−x

y = −ex

x

y

1

−2

2

4

−4 −2 2

−3

y = ex

y = 4ex − 3

x

y

1

−2

2

4

−4 −2 2

−3

y = ex

y = 4e ½x − 3

Graph Transformations
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38.6 Solving Exponential Functions

Some general tips on solving exponential functions:

j You need to use the log and indices laws

j Know that the ln x and  functions have an inverse relationship
e.g. if   then x = ln 6

if ln x = 4 then 
i.e. change the subject of the equation such that 

ex

ex = 6
x = e4

x = something

j Solving equations of the form: 
Rewrite equation such that:            

ln (ax + b) = p
ax + b = ep

j Solving equations of the form:          
Take natural logs both sides:          

eax + b = q
ax + b = ln q

j Look for questions that allow for substitution, creating a quadratic or cubic equation

j Calculators: some calculators have a function button to allow calculations of logs to any base

j Otherwise use the change of base calculation.

38.6.1  Example:

1

10
3x = 270 ∴ 3x = log10 270 ⇒ x = 0·810

6
x = 78

log10 6
x =  log10 78

x log10 6 =  log10 78

x =  
log10 78

log10 6
=

1·892

0·778
= 2·432

2 Converting equations of type  to base e is required if a differential or integral is to be
taken. The equation should be of the form: .

y = abx

y = aekt

   y = ab
x

   y = a × e
ln (bx)

   y = a × e
x ln (b)

   y = a × e
kx  k = ln bwhere

Recall that something = eln (something)

38.7 Exponential Growth & Decay

Exponentials allow real world events to be modelled.

Exponential growth is modelled by the equation with the form:

    N = Ae
kt where A, k are constants and k > 0

This applies to investments, population growth, and heating to name a few.

Exponential decay is modelled by the equation with the form:

    N = Ae
−kt where A, k are constants and k > 0

This applies to radioactive decay, population falls, and cooling to name a few.
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38.7.1  Example:

1 An oil bath is heated and the temperature of the oil, , after t hours of heating is given by:T°C

    T = 28 + 100e
− t

20 t > 0

Give the temp at the moment the heating is removed:

    T = 28 + 100e
− 0

20

    = 28 + 100 × 1

    = 128°C

Give the temp 5 hours after the heating is removed:

    T = 28 + 100e
− 5

20

       = 28 + 100e
−1

4

     = 28 + 100 × 0·7788…

     = 105·88°C

Find the time taken for the temp to fall to 64°C:

    64 = 28 + 100e
− t

20

    64 − 28 = 100e
− t

20

    
36

100
= e

− t
20

    ln ( 36

100) = ln e
− t

20

   ln 0·36 = −
t

20
 ln e  ln e = 1but

  ∴    t = −20 ln 0·36

    = −20 × (−1·022)

    =  20·43 hrs

2 Plutonium decay is represented by:

      P = 10 (1

2)
t

24100

P =   tWhere amount left after time , starting with 10Kgs in this example:

P = 10 (1

2)
241

24100

After 241 years

        P = 10 (1

2)
1

100

= 10 × 0·933

        P = 9·33 Kgs
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38.8 Differentiation of ex and ln x

 when differentiated is . This is the only function to be its own derivative.ex ex

y = e
x ⇒

dy

dx
= e

x

This is one of its most useful properties as it can be used with the chain, product & quotient rules.

Differentiating ln x gives:

y = ln x ⇒
dy

dx
=

1

x

38.9 Integration of ex and ln x

See later sections.

38.10 Heinous Howler

Don’t make the mistake of trying to differentiate  ‘normally’:y = ex

 y = e
x    

dy

dx
= e

x   
dy

dx
≠ xe

x − 1Note that if then and NOT
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39.1 Intro to Numerical Methods

Most equations covered so far have been relatively easy to solve by algebraic means, leading to exact answers,
even if the solutions are in surd form.

Now we consider equations that cannot be solved algebraically, which means finding other methods to estimate
the solutions to the required degree of accuracy. Typical equations that require numerical solutions are:

x
3 − 4x + 3 = 0 e

x − 6x = 0 x
4 + 3x

2 − 2 = 0 x
3 − sin (x) − 5 = 0

Recall that solving an equation starts by setting the equation to zero and finding all the values of x, for which,    y
= 0 and which we call the real roots of the equation.

E.g.
x

2 − 6x + 8 = 0

(x − 2) (x − 4) = 0

 x = 2 & x = 4Roots are:

This is the same as finding all the values of x for which the curve  intersects the line y = 0.y = x2 − 6x + 8

In function notation, the real roots are found when .f (x) = 0

There are three main numerical methods which can be used to estimate the solution of an equation:

j Graphical methods: Draw a sketch or use a graphical calculator. Use the change of sign methods to
refine the solution.

j Change of Sign methods: Locate a real root between two points by detecting a change of sign in .f (x)

j Iterative formulae: Set up and use a formula that converges on a solution. 

Illustrate with staircase or cobweb graphs.

In using these methods note the following:

j The accuracy of each solution should be stated, usually to the required number of decimal places (dp).

j Be aware of the limitations of each of these methods.

j If available, use algebraic methods to give an exact solution.

j A sketch is worth a 1000 numbers! You should be familiar with the various standard graphs, 

see 68 • Apdx • Catalogue of Graphs
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39.2 Locating Roots Graphically

There are two ways of locating the real roots graphically. The traditional method is to set the function to zero and
plot the function directly. 

For example if , then rearrange to give   and plot f (x) = g (x) f (x) − g (x) = 0 y = f (x) − g (x)

However, some functions are too complicated to sketch directly, and it becomes simpler if our function
 is plotted as two separate curves, where the intersection of the two functions  and  will give

the required solutions.
f (x) = g (x) f (x) g (x)

This method also makes it easier if the combined function crosses the x-axis at a very shallow angle making it
difficult to read the actual root from the graph.

E.g. Consider the function: ex = 4x + 8

Since  are standard curves, it is easier to sketch them separately and observe the
intersection of the two curves.

ex 4x + 8and 

Sketch the LHS and RHS of the
equation thus:

  and
 

The curve for  
is shown for comparison.

Note how the roots of the original
function are the same as the x
values of the intersection of the
two separate functions plotted.

Roots are located at:
 

y = ex

y = 4x + 8

y = ex − 4x − 8

x ≈ −2·0,   x ≈ 3·0

y

−20

0

20

40

x
−4 −2 2

y = ex − 4x − 8

y = 4x + 8

y = ex

root 

root 

39.3 Change of Sign in f(x)

As seen from the diagram, right, as the curve
crosses the x-axis (at the root), the value of 
changes sign. 

In this example, testing the function at points a
and b, will show that the curve changes from
−ve at point a, to +ve at point b. 

We can then say that a root lies between 
and , provided the function is continuous.

This is known as the interval, 

f (x)

x = a

x = b

a < x < b

y

0
x

y = f(x)

a
b

y +ve

y −ve {
{

The change of sign is only valid if the function is set to zero and the function is continuous. 

In the case of comparing two functions, say, , at an intersection, then set the equation to be
.

f (x)   g (x)and
f (x) − g (x) = 0
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39.4 Locating Roots Methodically

The following methods rely on choosing a range of values of x and testing them to see if  changes sign.f (x)

Sketching a graph is a first step in solving many of these numerical type problems, as this will often tell you how
many solutions there are, and roughly what values of x to choose for testing. A graphing calculator is a useful
tool for this. 

There are three alternate methods available, and you may wish to mix and match according to the situation
presented in the question. Assuming a root is found in the interval of, say, ; a search for a change of
sign in  is made by selecting values for x chosen thus:

1 < x < 2
f (x)

j Decimal search: Use regularly spaced decimal values, such as 
Once a change of sign is found, do another decimal search, but this time with smaller interval steps of
0·01, then steps of 0·001 and so on until the required accuracy is achieved. 
Use this method if an accurate graph is not available to you.

x = 1.1,  1.2,  1.3 … 1.7,  1.8,  1.9

j Interval bisection: Bisect the interval and test for a change of sign, and keep on bisecting the
subsequent intervals until the level of accuracy is achieved. Start with  as
appropriate. A change of sign will govern which values to bisect.

x = 1.5,  1.75,  1.875

j Linear interpolation: In this case, interpolate the probable value of the root from the values of  at
the interval values, i.e. .  You can then interpolate a new value of x based on the first
interpolated value and so on. 
In practice it might be easier to do a simple interpolation on the first interval, then use either of the two
methods above for further refinement. A certain amount of caution is required because the curve is not
linear, so do not expect an accurate answer on the first interpolation − it is only a ‘starter for 10’

f (x)
f (1)  f (2)and 

E.g. Solve the equation  accurate to 2 dp.x3 + 8x − 20 = 0

Solution:

Draw a sketch.

From this it can be see there is a solution
in the interval 

Substituting these values in  and we
observe a change of sign, which confirms
a root in the given interval.

1 < x < 2

f (x)

f (1) = 1 + 8 − 20 = −11

f (2) = 8 + 16 − 20 = +4

y

−20

−10

10

20

x
0 1 2 3

y = x3 + 8x − 20

a

b

Decimal Search:
To speed up the calculation, observe that the root appears closer to . Start at

 and initially use a difference of 0·2 between each x value:
x = 2  x = 1than

x = 2

x 1.0 1.2 1.4 1.6 1.8 2.0

f (x) −11            − 6·056 −3·104 + 0·232 +4

Refine using steps of 0·05

x 1.60 1.65 1.70 1.75 1.80

f (x) −3·1040 −1·4870 − 0·6406 + 0·2320

Refine using steps of 0·01

x 1.75 1.76 1.77 1.78 1·785 1·79 1.80

f (x) − 0·6406 − 0·2947 − 0·1202 − 0·3259 + 0·0553 + 0·2320

With an interval of , we can say that the root is approximately 1·79 (2 dp),
(note the extra column for  to help determine that 1.79 is the correct root to 2 dp).

1·785 < x < 1·79
x = 1.785
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Interval Bisection:
Bisect the interval given interval,  giving  1·0 < x < 2·0 x = 1.5

x 1.0 1.5 2.0

f (x) −11 − 4·6250 + 4

Bisect the new interval , giving  1·5 < x < 2·0 x = 1.75

x 1.50 1.75 2.00

f (x) − 4·6250 − 0·6406 + 4

Bisect the new interval,  giving 1·75 < x < 2·0 x = 1.875

x 1.750 1.875 2.000

f (x) − 0·6406 +1·5918 + 4

Bisect the new interval, 1·75 < x < 1·875 giving x = 1.8125

x 1.750 1.8125 1.875

f (x) − 0·6406 + 0·4523 +1·5918

Bisect the new interval, 1·75 < x < 1·8125

x 1.750 1.796875 1.8125

f (x) − 0·6406 + 0·1768 + 0·4523

Bisect the new interval, 1·75 < x < 1·7969

x 1.750 1.7734375 1.796875

f (x) − 0·6406 − 0·2349 + 0·1768

Bisect the new interval, 1·7734 < x < 1·7969

x 1.7734375 1.7851562 1.796875

f (x) − 0·2349 − 0·0298 + 0·1768

Bisect the new interval, 1·7852 < x < 1·7969

x 1.7851562 1.7910156 1.796875

f (x) − 0·0298 + 0·0732 + 0·1768

With the new interval, , 
we can say that the root is approximately 1·79 (2 dp).

1·7852 < x < 1·7910

Linear Interpolation:
Using the values of  estimate the value of the root:f (1)  f (2)and 

x 1.0 1.733 2.0

f (x) −11 − 0·9259 + 4
2 − 4

4 + 11

Using the values of  estimate the value of the root:f (1·733)  f (2)and 

x 1.733 1.7834 2.0

f (x) − 0·9259 − 0·0599 + 4
2 − (2 − 1·733) ( 4

4 + 0·9259)
Using the values of  estimate the value of the root:f (1·7834)  f (2)and 

x 1.7834 1.7866 2.0

f (x) − 0·0599 − 0·0038 + 4
2 − (2 − 1·7834) ( 4

4 + 0·0599)
Using the values of  estimate the value of the root:f (1·7866)  f (2)and 

x 1.7866 1.78684 2.0

f (x) − 0·0038 − 0·0002 + 4
2 − (2 − 1·7866) ( 4

4 + 0·0038)
Once again, we can say that the root is approximately 1·79 (2 dp), particularly since the value
of f (1·78684)  is very small.
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In Practise:
In this example, linear interpolation gave a more accurate answer in the least number of steps.
However, it does require some extra maths to work our each new value of x. This is not a
problem with a spreadsheet, but in exam conditions this may not be so easy.

Perhaps the easiest option is to use linear interpolation as the initial first step and then use a
decimal search.

Using interpolation, the root is approximately:

b − (b − a) ( f (b)
f (b) + f (a))  ⇒  2 −

4

4 + 11
≈ 1.73

Since  is −ve, then the root must be in the interval f (1.73) 1·73 < x < 2

Set up some suitable values for a decimal search:

 
x 1.73 1.75 1.77 1.79 1.81 1.83

f (x) −0·9822 −0·6406 −0·2947 +0·0553

The interval is now: . Refining the search with smaller increments:1·77 < x < 1·79

x 1.770 1.775 1.780 1.785 1.787 1.79

f (x) −0·2947 −0·1202 −0·0325 +0·0025 +0·0553

The interval is now: . We can say the root is 1.79 to 2 dp.1·785 < x < 1·787

As you can see, the ‘starter for 10’ was not wholly accurate, but gave a very good starting
point.

For interest, the most accurate figure found for the root is  (8 dp)1·78685492

How Linear Interpolation works:

The blue line illustrates the first straight
line interpolation between ,
giving the interception of the x−axis at
1.733. 

This is followed by the second line in red
between , giving a new
x value of 1.783. and so on.

f (1)  f (2)and 

f (1·733)  f (2)and 

y

−10

5

x
1 2

y = f(2)

1.733

1.783

y = f(1.733)

y = f(1)

DP accuracy:
If asked to find a root accurate to 2 dp, you need to work with values of x to 3 dp as a
minimum. If our answer is 1.79 (2 dp), then you need to use an interval of 
to ensure the solution is within the prescribed accuracy.

1·785 < x < 1·795

349



My A Level Maths Notes

39.5 Limitations of the Change of Sign Methods

There are a few disadvantages with the change of sign methods. Notably it is time consuming and open to error
when making several similar calculations, even with a half decent calculator. This method is not the best method
to choose if a high degree of accuracy is required, in which case the iterative approach should be used.

There are three other traps for unwary players. These are:

j The curve may touch the x-axis but not cross it, (repeated roots possibly).

j The chosen values of x for the interval search may be too course to find all the roots.

j The function may contain a discontinuity, such as an asymptote.

In the diagram below are two curves (L1 & L2) that touch the x-axis but do not cross it, and on the right hand
side, are two curves that cross the x-axis between . 
In R1,  are both +ve, therefore no root is detected. 
In R2,  is −ve and  is +ve, indicating a root has been found, however, there are three roots in the interval,
so potentially two roots may be missed.

x = a x = band 
f (a)  f (b)and 
f (a) f (b)

x

y

x a b

y

x

y

x

y

a
b

L1

L2

R1

R2

Limitations of Change of Sign Methods

Not all functions are continuous, particularly functions like . Functions that have

asymptotes or other discontinuities may give a false indication of a root if the interval straddles the discontinuity
and a change of sign is detected, see L1 below. On the other hand, R1 shows a curve in which  are
both +ve, and no root is detected, missing the real root.  

f (x) = tan x,  f (x) = 1
x − k

and 

f (a)  f (b)and 

y

0 x
a

b

y +ve

y −ve {
{

y

0 xa b

y +vey +ve {{

L1 R1

False Indication of a Root
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39.6 Iteration to find Approximate Roots

This method uses an iterative formula in which the output of the first calculation is fed back into the same
formula to find a second value of x, which, if the formula is chosen wisely, will lead to a series of x values that
converge on the root. This is also know as a recurrence relationship, (see Sequences & Series ).

This requires that you to rewrite a function  as:f (x)

x = g (x)

This can then be used as the basis of an iterative formulae such that:

xn + 1 = g (xn)

If the iteration converges it will approach some limit, r, such that:

r = g (r)

This limit will be the root of the original equation f (x) = 0

In a graphical sense, we are being asked to find the intersection points of y = g (x)   y = xand

The first step is to rearrange the function to make x the subject. There are many ways to rearrange a function, for
example: 

E.g.
x

4 − 10x + 9 = 0

• x
4 = 10x − 9 ⇒  x = 4 10x − 9

• 10x = x
4 + 9 ⇒  x =

x4 + 9

10

• x (x3 − 10) = −9  ⇒  x =
− 9

(x3 − 10)

In order to converge, the function  needs to be chosen such that the gradient of , as it crosses the line
, is less than the gradient of the line, which is 1. Which gives the rule that:

g (x) g (x)
y = x

  − 1 < g′ (x) < 1

         | g′ (x)  | < 1or

Having found a possible root, the change of sign method should be used to prove the result.
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E.g. Take our function above:

Rearrange to give:

Sketch  and 

Also plotted as a comparison is:

 x4 − 10x + 9 = 0

 x = x4 + 9
10

y = x4 + 9
10 y = x

 y = x4 − 10x + 9

y

−1

1

1.5

x
0.5 1 1.5 2

y = x4 − 10x + 9
y = x

y = (x4 + 9)/10

From the graph we see that there are two roots of approximately x ≈ 1.0  x ≈ 1.7and

We can set up the iterative formulae as:

xn + 1 =
xn

4 + 9

10

Start with  and find the first root:x0 = 0·5

x1 =
(0·5)4 + 9

10
= 0·90625  Feed this answer back into the formula to give:

x2 =
(0·90625)4 + 9

10
= 0·96745 Again feed back the answer and so on…

x3 =
(0·96745)4 + 9

10
= 0·98760 etc

x4 = 0·99513

x5 = 0·99806

x6 = 0·99922

After just 6 iterations it can be seen the first root is in fact 1.00 (2 dp)

After 14  iterations the value of x is 0·9999995.

The iterative process can also be used with  as a starting value to give:x0 = 1·5

x1 =
(1·5)4 + 9

10
= 1·40625

x2 =
(1·40625)4 + 9

10
= 1·29107

x3 =
(1·29107)4 + 9

10
= 1·17784

x4 = 1·09246

x5 = 1·04244

x6 = 1·01809

x7 = 1·00743

This time the value converges from the other side — provided you choose a value below the
second root of  (found graphically). If a value of  is chosen, the iterations
diverge very quickly.

x ≈ 1·66 x0 > 1·67

To prove the result, find  and f (0·99922) = + 0·00468 f (1·00743) = − 0·04424

A change of sign proves the root.

Of course the root could have been found by inspection, since  and  is a
factor, but this does illustrate that these numerical methods only give close approximations to
the answer.

f (1) = 0 (x − 1)
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39.7 Staircase & Cobweb Diagrams

The iterative process can be illustrated with a staircase or cobweb diagram depending on the gradient of the
curve as it crosses the line . In drawing the  lines, always start with  and draw a vertical line to the
curve, then move across to the straight line. Use the straight line as a ‘transfer’ line to find the next value of x.

y = x xn x0

Convergence is only possible if:   , as the curve crosses the straight line, .−1 < g′ (x) < 1 y = x

E.g. Find a positive root for  using an iterative formula with a starting value of
:

x3 − 8x + 3 = 0
x0 = 1·0

Take our function above:

Rearrange to give:

Sketch  and 

From the sketch we see that there are two
positive roots of approximately 0·4 and
2·6.

There is also a root at 

 x3 − 8x + 3 = 0

 x = 3 8x − 3

y = 3 8x − 3 y = x

x ≈ − 3·0

y

1

2

3

x0 1 2
x0

x1

x1

x2

x2

x3

x3

y = 3Ú(8x − 3)

Set up the iterative formulae as:

xn + 1 = 3 8xn − 3

Note that the gradient of   is > 1 at the first root and the iterative process will not
work on this root. The gradient of the line at the second root is positive and < 1, so this will
produce a staircase diagram.

y = 3 8x − 3

Start with  and find the root:x0 = 1·0

x1 = 3 (8 × 1.00) − 3 = 1·70997  Feed this answer back to give:

x2 = 3 (8 × 1·70997) − 3 = 2·20219  Again feed back the answer and so on…

x3 = 3 (8 × 2·20219) − 3 = 2·44507

x4 = 3 (8 × 2·44507) − 3 = 2·54893

x5 = 3 (8 × 2·54893) − 3 = 2·59087

x6 = 3 (8 × 2·59087) − 3 = 2·60742

x7 = 3 (8 × 2·60742) − 3 = 2·61389

x8 = 3 (8 × 2·61389) − 3 = 2·61642

After 8 iterations it can be seen that the second root is 2·62 (2 dp).

You might try a starting value of  and note how the values converge from the other
side.

x0 = 3·0
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E.g. Find the root for , using an iterative formula with a starting value of 1
ex − x = 0 x0 = 0·25

Take our function above:

Rearrange to give:

Sketch  and 

From the sketch we see that there is a
root of approximately 0·55

 1
ex − x = 0

 x = e
−x

y = e
−x

y = x

y

0.5

1

x
0 0.25 0.5 0.75 1

y = e−x

x1

x1x2 x3x0

Set up the iterative formulae as:

xn + 1 = e
−xn

The gradient of the line at the intersection is negative and < 1, so this will produce a cobweb
diagram.

Start with  and find the root:x0 = 0·25

x1 = e
−0·25 = 0·77880  Feed this answer back to give:

x2 = e
−0·77880   = 0·45896    Again feed back the answer and so on…

x3 = e
−0·45896   = 0·63194

x4 = e
−0·63194   = 0·53156

x5 = e
−0·53156   = 0·58769

x6 = e
−0·587689 = 0·55561

x7 = e
−0·55561   = 0·57372

x8 = e
−0·57372  = 0·56342

After 8 iterations it can be seen that the root is 0·56 (2 dp).

In these types of iterations, the values of x oscillate around the root.
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39.8 Limitations of the Iterative Methods

The iterative method will fail if the modulus of the gradient of  is greater than 1, as it crosses the line
. This leads to a diverging series of x values.

For convergence the rule is:

g (x)
y = x

−1 < g′ (x) < 1

        | g′ (x)  | < 1     or

y

x0

y

x0

|g´(x)| > 1

|g´(x)| < 1

|g´(x)| < 1

|g´(x)| > 1

Iteration converges
Root found

Iteration diverges
Root not found

Iteration diverges
Root not found

Iteration converges
Root found

Gradient Rules for Convergence 

The rules can be summarised thus:

j If  is small, the series converges quickly.| g′ (x)  |
j If the gradient is positive, the series approaches the root from one side, or the other, and produces a

staircase diagram.

j If the gradient is negative, the series alternates above and below the root and produces a cobweb

diagram.

39.9 Choosing Convergent Iterations

Not every arrangement of  leads to an iterative formula that converges. In which case another
rearrangement of  needs to be found.

x = g (x)
f (x)

Note that two different arrangements will be inverses, therefore, the curves will be reflections in the line 
This means that if one fails, the other one will provide a solution. (See Fig above).

y = x.
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39.10 Numerical Solutions Worked Examples

39.10.1  Example:

1 Show that  has only one root, and find the root to 2 dp.x3 − cos x − 15 = 0

Solution:

Rearrange the function to be:

Draw a sketch of  and

There is only one intersection of the two lines
and hence only one root, in the interval:

Tip: set calculator to radians.

x3 − 15 =  cos x

y = x3 − 15
y = cos x

   2 < x < 3

y

−20

−15

−10

−5

0

5

x
−1 1 2 3

y = x3 − 15

y = cos x

Halving the interval and finding , between 2 and 2·5:f (x)

x 2·1 2·2 2·3 2·4 2·5 2·6

f (x) −5.2342 −3.7635 −2.1667 −0.4386 +1.42614

Refining with a decimal search

x 2·40 2·42 2·43 2·44 2·46 2·48 2·50

f (x) −0.4386 −0.0768 +0·1062 +0.2906 +1.42614

Last search

x 2·420 2·422 2·424 2·426 2·428 2·430

f (x) −0.0768 −0.0403 −0.0037 +0.0329 +0·1062

The root is in the interval:  2·424 < x < 2·426

Hence root is 2.42 (2 dp)
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2 Show that there is an intersection between the functions:

y = e
1
6x  y = 3 3x + 5

which has an x coordinate between 6 and 7.

Show that the two equations can be written in the form:

x = 2 ln (3x + 5)

 and using a suitable iterative formula, find the value of the x coordinate to 3 dp.

Solution:
To test for a root in the interval

substitute both values into each equation
and compare results to see if there is a
change of sign.

   6 < x < 7

y

−2.5.

2.5

5

x−5 0 5 7.5

Set 

x 6 7

y = e
1
6x

2·718 3·211

y = 3 3x + 5 2·844 2·962

e
1
6x

− 3 3x + 5 − 0·126 + 0·249

f (x) − g (x) = 0

From the table, you can see a change of sign when the functions are compared.

To show the equations can be written in the given manner, equate both functions.:

   e
1
6x = 3 3x + 5

   
1

6
x = ln (3x + 5)

1
3

   x =
6

3
ln (3x + 5)

   x = 2 ln (3x + 5)

The iterative formula becomes:

   xn + 1 = 2 ln (3xn + 5)

Using xn = 6·0

x1 = 2 ln (3 × 6 + 5) = 6·2710

x2 = 2 ln (3 × 6·2710 + 5) = 6·3405

x3 = 2 ln (3 × 6·3405 + 5) = 6·3579

x4 = 2 ln (3 × 6·3579 + 5) = 6·3622

x5 = 2 ln (3 × 6·3622 + 5) = 6·3633

x6 = 6·3636

x7 = 6·3637

Root is 6·364 to 3 dp.
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3 Show that the function  has a real root in the interval .f (x) = x3 − 5x2 − 6 5 < x < 6

Rearrange the function in the form: , where c and b are constants.x = c
x + b

Using this form, write a suitable iterative formula and say whether it converges or diverges.

Solution:

Look for a change of sign in the interval :5 < x < 6

Change of sign, therefore a root exists.
x 5 5.3 5.5 5.7 6

f (x) −6·0 +2·427 +30

Rearranging the function:

x
3 − 5x

2 − 6 = 0

x
2 (x − 5) = 6

x
2 =

6

(x − 5)

x =
6

(x − 5)

Making the iterative formula:

xn + 1 =
6

(xn − 5)

x0 = 5Let 

x1 =
6

(5 − 5) =  no solution

x0 = 6Let 

x1 =
6

(6 − 5) =  2·44948

x1 =
6

(2·44948 − 5) =  no solution

The iterative formula does not converge.

However, this one below does, very slowly:

x
3 = 5x

2 + 6

x = 3 5x2 + 6

xn + 1 = 3 5xn
2 + 6

x1 = 3 5 × 52 + 6 = 5·07875

x2 = 5·1295

x3 = 5·1621

…

x20 = 5·2201

Root = 5·220 (3dp) (Note gradient at this point )≈ 0·64
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39.11 Numerical Solutions Digest

The accuracy of each solution should be stated, usually to the required number of decimal places (dp).

Iterative method:

Rewrite the function  as:f (x)

x = g (x)

The iterative formula is:

xn + 1 = g (xn)

For convergence the rule is:

−1 < g′ (x) < 1

    | g′ (x)  | < 1 or

Calculator work:

On a calculator, with an iterative formula of, say,  and an , place 2 into the ‘Ans’ field, then

enter: 

3 28 − 5xn x0 = 2

(28 − 5Ans)1 ÷ 3

Each press of the ‘=’ key will give the next iteration.
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40.1 Estimating Areas Intro

This is part of the Numerical Methods section of the syllabus.

Normally, areas under a curve are calculated by using integration, however, for functions that are really difficult
to integrate, numerical methods have to be used to give a good approximation. In reality, you will only need
these methods for those hard cases and when told to use these methods in an exam!

In the syllabus there are three methods you need to know:

j The Trapezium rule − covered in C2

j The Mid-ordinate Rule − C3 (AQA requirement)

j Simpson’s Rule − C3

All these methods are based on the premise of dividing the area under the curve into thin strips, calculating the
area of each strip and then summing these areas together to find an overall estimate. Clearly, the more strips that
are used, the more accurate the answer, and in practise, many hundreds of strips would be chosen with results
being calculated electronically.

Each method has its advantages and disadvantages.

Exam hint: always start the counting of the ordinates from zero, and draw a diagram, even if you don’t know
what the function really looks like.

40.2 Trapezium Rule − a Reminder

x

y y = f(x)

¬  ®

y0
y1 y2

y3

x0 x1 x2 x3

hhh

O

yn

xnxn−1

yn−1

h

n

a b

The Trapezium Rule

For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈
h

2
[(y0 + yn) + 2 (y1 + y2 +… + yn − 1)]

  h =
b − a

n
  n =where and number of strips

Recall that the disadvantage of the trapezium rule is that the space between the trapezium and the curve is either
an under or over estimate of the real area, although this is offset if a large number of strips is used.

To use the trapezium rule, ensure that the part of the curve of interest is either all above or all below the x-axis,
such that y is either .y > 0  OR  y < 0

See the C2 section on the Trapezium Rule for more.
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40.3 Mid-ordinate Rule

Both the Trapezium rule and the Mid-ordinate rule use straight lines to approximate the curve of the function.
With the mid-ordinate rule, a line is drawn through the midpoint of the curve cut out by each strip, which
attempts to average out the area.

x

y

y = f(x)¬  ®

y1/2

x0 xnx1/2

a b

x3/2 x5/2

y3/2

y5/2

h h h

Mid-ordinate rule

For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈ h [y1/2 + y3/2 +… + yn − 3/2 + yn − 1/2]

  h =
b − a

n
  n =where and number of strips

40.3.1  Example:

1 Use the mid-ordinate rule with 4 strips (5 ordinates) to estimate the area given by

∫
3

1

(e3x + 1)1/2
 dx

Solution:

Draw a sketch, even if you are not sure of the

exact shape of the function, although in this

case it is bound to be an exponential curve of

some sort.

Then calculate h:

Set up a table to tabulate the results:

h =
b − a

n
=

3 − 1

4
=

1

2 x

y

¬ 
®

y1/2

x0 x4

1 3

y3/2

y5/2

21½ 2½

¯

y7/2y = (e3x +1)½

x1 x2 x3

h

xmid − ord x f (x)

x1/2 1·25 ⇒ f (x1/2)    6·5970

x3/2 1·75 ⇒ f (x3/2)  13·8407

x5/2 2·25 ⇒ f (x5/2)  29·2414

x7/2 2·75 ⇒ f (x7/2)  61·8759

≈
1

2
[6·5970 + 13·8407 + 29·2414 + 61·8759] ⇒

111·555

2
= 55·78 Area sq units (2 dp)

Compare this with the proper integrated value of 57·10 sq units.
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2 Use the mid-ordinate rule with 4 strips (5 ordinates) to estimate the area given by

∫
2

0

3

x2 + 1
 dx

Solution:

Draw a sketch.

Then calculate h:

h =
b − a

n
=

2 − 0

4
=

1

2

x

y

¬



®

x0 x4

1 21½

¯

y = 3/(x2 + 1)

x1 x2 x3

½

y1/2

y3/2

y5/2

y7/2

h

Set up a table to tabulate the results:

xmid − ord x f (x)

x1/2 0·25 ⇒ f (x1/2)   2·8235 

x3/2 0·75 ⇒ f (x3/2) 1·9200 

x5/2 1·25 ⇒ f (x5/2) 1·1707 

x7/2 1·75 ⇒ f (x7/2) 0·7385 

≈
1

2
[2·8235 + 1·92 + 1·1707 + 0·7385] ⇒

6·6527

2
= 3·33 Area sq units (2 dp)

Compare this with the proper integrated value of 3·3214 sq units.
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40.4 Simpson’s Rule

In this case, the Simpson’s rule finds a better fit with the function curve by using a series of quadratic curves
instead of a straight lines. Each quadratic curve is made to fit between two strips and therefore this method
requires an even number of strips.

The diagram illustrates this with an exaggerated function curve, and shows a quadratic curve used to fit the mid
point and end points of the two strips.

x

y
y = f(x)

¬ 

y0

x0 xn

a b

y1

y2

quadratic
hh

Simpson�s Rule showing two strips

For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈
h

3
[(y0 + yn) + 4 (y1 + y3 +… + yn − 1) + 2 (y2 + y4 +… + yn − 2)]

  h =
b − a

n
  n =where and an EVEN number of strips

In simpler terms:

∫
b

a

f (x)  dx ≈
h

3
[( ) + 4 ( ) + 2 ( )]first + last ordinate sum of odd ordinates sum of even ordinates

The advantages of using Simpson’s rule are:

j Accurate for any cubic graph, but less accurate for higher order functions

j More accurate than the other two methods discussed.

x

y
y = f(x)

¬ 

y0

x0 xn

a b

yn

quadratic
curves

h h hhhh

® ¯ ° ±

Simpson�s Rule showing six strips
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40.4.1  Example:

1 Use Simpson’s rule with 4 strips (5 ordinates) to estimate the area given by

∫
3

1

(e3x + 1)1/2
 dx

Solution:

Draw a sketch, even if you are not sure of the

exact shape of the function, although in this

case it is bound to be an exponential curve of

some sort.

Then calculate h:

h =
b − a

n
=

3 − 1

4
=

1

2
x

y

¬ 
®

y0

x0 x4

1 3

y1

y2

21½ 2½

¯

y3

y = (e3x +1)½

x1 x2 x3

y4

h

Set up a table to tabulate the results:

xordinate x f (x)

x0 1·0 ⇒ f (x0)    4·5919      First

x1 1·5 ⇒ f (x1)    9·5403 Odd

x2 2·0 ⇒ f (x2) 20·1104 Even

x3 2·5 ⇒ f (x3) 42·5328 Odd

x4 3·0 ⇒ f (x4) 90·0227 Last

≈
1

2
×

1

3
[(4·5919 + 90·0227) + 4 (9·5403 + 42·5328) + 2 (20·1104)]Area

≈
1

6
× 343·115 ≈ 57·16  Area sq units (2 dp)

This compares with the previous calculation by the mid-ordinate rule of 55·78 and a fully
integrated value of 57·10 sq units.
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2 Use Simpson’s rule with 4 strips (5 ordinates) to estimate the area given by:

∫
2

0

3

x2 + 1
 dx

Solution:

Draw a sketch.

Then calculate h:

h =
b − a

n
=

2 − 0

4
=

1

2

x

y

¬



®

y0

x0 x4

1

y1

y2

21½

¯

y3

y = 3/(x2 + 1)

x1 x2 x3

y4

½

h

Set up a table to tabulate the results:

xordinate x f (x)

x0 0·0 ⇒ f (x0)  3·000     First

x1 0·5 ⇒ f (x1)  2·400   Odd

x2 1·0 ⇒ f (x2) 1·500 Even

x3 1·5 ⇒ f (x3) 0·923 Odd

x4 2·0 ⇒ f (x4) 0·600 Last

≈
1

2
×

1

3
[(3·000 + 0·600) + 4 (2·400 + 0·923) + 2 (1·50)]Area

≈
1

6
× 19·892 ≈ 3·32 Area sq units (2 dp)

This compares with the previous calculation by the mid-ordinate rule of 3·33 and a fully integrated
value of 3·3214 sq units.

i.e. ∫
2

0

3

x2 + 1
 dx = 3 [tan

−1
x]2

0 = 3·3214
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40.5 Relationship Between Definite Integrals and Limit of the Sum

Consider the function  as shown in the diagram below. In this case the width of each strip is a small
value of x, called .

y = f (x)
δx

The height of each strip is the value of y at the start of each strip. For the ith strip, y = yi

Hence, the area of the ith strip is given by:

        A = yi δx

         y = f (x)But

    A = f (xi)  δxHence

x

y

yi

y = f (x)

d

The area under the curve is the summation of all these strips, therefore the area is given approximately by:

A ≈ ∑
n

i = 1

 f (xi)  δx

If  is very, very small, the accuracy of the calculation improves such that, as y tends towards zero, then:δx

A = lim
δx → 0

 ∑
n

i = 1

 f (xi)  δx

Hence, the limit of the sum becomes the equivalent of the definite integral thus:

lim
δx → 0

 ∑
n

i = 1

 f (xi)  δx = ∫
 b

a

f (x)  dx
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41 • C3 • Trig: Functions & Identities

41.1 Degrees or Radians

Generally the use of degrees or radians in a question is self explanatory, but the general terms, use of degrees
will be made clear by using the degree symbol. 

All the trig identities work for either degrees or radians.

41.2 Reciprocal Trig Functions

From earlier work we know about , not forgetting that .sin θ,  cos θ, and tan θ tan θ =
sin θ
cos θ

Three more ratios are generated when taking the reciprocal of these trig functions.

Full Name Short Name Definition Limitations

secant θ sec θ sec θ =
1

cos θ
cos θ ≠ 0

cosecant θ cosec θ cosec θ =
1

sin θ
sin θ ≠ 0

cotangent θ cot θ cot θ =
1

tan θ
=

cos θ
sin θ

tan θ ≠ 0; sin θ ≠ 0

Note that the above ratios are undefined if  are 0.sin θ,  cos θ,  or tan θ
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41.3 Reciprocal Trig Functions Graphs

Function Properties Illustration

y = sec x Secant Function:

Even function

Domain: 

Range: 

Periodic function, period 

y-intercept: 

Vertical asymptotes: 

where  crosses the x-axis at odd

multiples of  ( )

Line symmetry about the y-axis and

every vertical line passing through each

vertex.

x ∈ R, x ≠
π
2

+ nπ

−1 ≥ f (x) ≥ 1

| sec x | ≥ 1

2π
(0,  1)

x =
π
2

+ nπ

cos x
½π cos x = 0

90 180 270

-1

1

p/2 p 3p/2

y = sec x

360

2p

y

−90

-p/2

y = 
cos x

1

y = cosec x Cosecant Function:

Odd function

Domain: 

Range: 

Periodic function, period 

No x or y intercepts

Vertical asymptotes: 

where  crosses the x-axis at  any

multiples of  ( )

Rotational symmetry about the origin -

order 2.

Line symmetry about every vertical

line passing through each vertex.

x ∈ R, x ≠ nπ
−1 ≥ f (x) ≥ 1

| cosec x | ≥ 1

2π

x = nπ
sin x

π sin x = 0

90 180 270

-1

1

p/2 p 3p/2

y = cosec x

360

2p

y

−90

-p/2

y = 
sin x

1

y = cot x Cotangent Function:

Odd function

Domain: 

Range: 

Periodic function, period 

x-intercepts:  where 

has asymptotes

Vertical asymptotes: 

where  crosses the x-axis at  any

multiples of  ( )

Rotational symmetry about the origin -

order 2.

x ∈ R, x ≠ nπ
f (x) ∈ R

π

(π
2

+ nπ,  0) tan x

x = nπ
tan x

π tan x = 0

36090 180 270

−1

1

-90

p/2 p 3p/2 2p

y = cot x

45
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41.4 Reciprocal Trig Functions Worked Examples

To solve problems involving the reciprocal trig ratios, first solve for .sin θ,  cos θ, and tan θ

41.4.1  Example:

1 Find the exact value of .sec 
3π
4

Solution:

    sec θ =
1

cos θ
 cos 

3π
4

As we first solve 

 cos 
3π
4

= − cos 
π
4

= −
1

2

 sec 
3π
4

=
1

− 1

2

= − 2

3p—
4p—

4

2 Find the exact value of .cot 
11π

6

Solution:

      cot θ =
1

tan θ
 tan 

11π
6

As we first solve 

 tan 
11π

6
= − 

π
6

= −
1

3

 cot 
11π

6
=

1

− 1

3

= − 3

11p—
6

p—
6

3
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41.5 Pythagorean Identities

From C1/C2 we established the Pythagorean Identity:

cos
2 θ + sin

2 θ ≡ 1

Two other versions can be derived from this identity.

Version 1
Divide the above by sin2 θ

cos2 θ
sin2 θ

+
sin2 θ
sin2 θ

≡
1

sin2 θ

   cot
2 θ + 1 ≡ cosec

2 θ

Version 2
Divide the above by cos2 θ

cos2 θ
cos2 θ

+
sin2 θ
cos2 θ

≡
1

cos2 θ

   1 + tan
2 θ ≡ sec

2 θ

1 + cot
2 θ ≡ cosec

2 θ

1 + tan
2 θ ≡ sec

2 θ

41.5.1  Example:

1 Solve  for 3sec2 θ − 5 tan θ − 4 = 0 θ 0 ≤ θ ≤ 360°between 

Solution:

3 sec
2 θ − 5 tanθ − 4 = 0

3 (1 + tan
2 θ) − 5 tanθ − 4 = 0

3 + 3 tan
2 θ − 5 tanθ − 4 = 0

3 tan
2 θ − 5 tanθ − 1 = 0

tan θ =
−b ± b2 − 4ac

2a
=

5 ± 25 − 4 × 3 × 1

6

  =
5 ± 13

6

∴ tan θ = 1·847   tan θ = −0·180or

     tan θ = 1·847 ⇒  θ = 61·6°,  241·6°

     tan θ = −0·180      ⇒  θ = 169·8°,  349·8°

2 Show that:

sec2θ − 1

sec2θ
≡ sin

2θ

Solution:
Using the LHS:

sec2θ − 1

sec2θ
≡

1 + tan2 θ − 1

sec2θ
≡

tan2 θ
sec2θ

     ≡ tan
2θ cos

2θ

     ≡
sin2θ
 cos2θ

  cos
2θ

     ≡ sin
2θ

     ≡ RHS
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41.6 Compound Angle (Addition) Formulae

The expansion of expressions of the form of are completed using the
following Compound Angle or Addition identities.

sin (A ± B) ,  cos (A ± B) ,  & tan (A ± B)  

The proof of these first four are not required for the exam, but they should be learnt.

sin (A + B) ≡ sin A cos B + cos A sin B

sin (A − B) ≡ sin A cos B − cos A sin B

cos (A + B) ≡ cos A cos B − sin A sin B

cos (A − B) ≡ cos A cos B + sin A sin B

From the four identities above, the identities for  can be derived and could be asked for in the exam.tan (A ± B)

 tan (A + B)For :

   tan (A + B) ≡
sin (A + B)
cos (A + B)

          ≡
sin A cos B + cos A sin B
cos A cos B − sin A sin B

          ≡
   sin A cos B

cos A cos B + cos A sin B
cos A cos B  

cos A cos B
cos A cos B − sin A sin B

cos A cos B

          ≡
   sin A 

cos A + sin B
cos B  

1 − sin A sin B
cos A cos B

          ≡
tan A + Tan B
1 − tan A tan B

 tan (A − B)Similarly for :

   tan (A − B) ≡
tan A − tan B

1 + tan A tan B

tan (A + B) ≡
tan A + Tan B
1 − tan A tan B

tan (A − B) ≡
tan A − tan B

1 + tan A tan B
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41.6.1  Example:

1 Evaluate sin 75°, (non calculator method).

Solution:
The solution to all these type of problems is to split the angle up into the sum or difference of two
angles where the trig value is known for various standard angles like 30°, 45°, 60°, 90°, or 180°

sin 75° = sin (30° + 45°)

   = sin 30° cos 45° + cos 30° sin 45°

   =
1

2
×

1

2
+

3

2
×

1

2

   = (1

2) ( 2

2
) + ( 3

2
) ( 2

2
) =

2

4
+

2 3

4

   =
2 (1 + 3)

4

2 Evaluate cos 105°, (non calculator method).

Solution:

cos 105° = cos (60° + 45°)

cos (A + B) ≡ cos A cos B − sin A sin B

cos (105) = cos 60° cos 45° − sin 60° sin 45°

  = cos 60° cos 45° − sin 60° sin 45°

  =
1

2
×

1

2
−

3

2
×

1

2

  = (1

2) ( 2

2
) − ( 3

2
) ( 2

2
) =

2

4
−

2 3

4

cos 105°   =
2 (1 − 3)

4
= − 0·259

Note that a cosine in the second quadrant will be negative, so the answer is consistent.

3 Evaluate tan (−15°), (non calculator method).

Solution:

tan (−15°) = tan (45° − 60°)

tan (A − B) ≡
tan A − tan B

1 + tab A tan B

tan (−15°) =
tan 45° − tan 60°

1 + tan 45° tan 60°

     =
1 − 3

1 + 1 × 3

     =
1 − 3

1 + 3
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4 Evaluate  &  given that A is obtuse and , B is acute andcos (A + B) tan (A − B) sin A = 3
5

sin B = 12
13.

Solution:
First, find the values for .cos A, cos B, tan A, & tan B
A is obtuse which means quadrant 2, therefore sin is +ve, and both tan & cos are −ve.

sin A =
3

5
 ( △)recognise this a 3, 4, 5 right angled 

∴ tan A = −
3

4
  cos A = −

4

5
and

B is acute which means quadrant 1, therefore sin, tan & cos are +ve.

sin B =
12

13
 ( △)recognise this a 5, 12, 13 right angled 

∴ tan B =
12

5
  cos A =

5

13
and

cos (A + B) ≡ cos A cos B − sin A sin B

cos (A + B) = −
4

5
·

5

13
−

3

5
·
12

13
= −

56

65

tan (A − B) ≡
tan A − tan B

1 + tan A tan B

   ≡
−3

4 − 12
5

1 + (−3
4) 12

5

=
63

16

5 Prove that:

sin (A − B)
cos A cos B

+
sin (B − C)
cos B cos C

+
sin (C − A)
cos C cos A

≡ 0

Solution:
Using the LHS

=
sin A cos B − cos A sin B

cos A cos B
+

sin B cos C − cos B sin C
cos B cos C

+
sin C cos A − cos C sin A

cos C cos A

=
sin A cos B
cos A cos B

−
cos A sin B
cos A cos B

+
sin B cos C
cos B cos C

−
cos B sin C
cos B cos C

+
sin C cos A
cos C cos A

−
cos C sin A
cos C cos A

=
sin A
cos A

−
sin B
cos B

+
sin B
cos B

−
sin C
cos C

+
sin C
cos C

−
sin A
cos A

= tan A − tan B + tan B − tan C + tan C − tan A

= 0 

=  RHS

6 Show that:

cos (π
2

− x) ≡ sin x

Solution:
Using the LHS

cos (π
2

− x) ≡ cos 
π
2

 cos x + sin 
π
2

 sin x

        ≡ (0)  cos x + (1) sin x

        ≡ sin x

        ≡ RHS
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7 Solve  for 2 cos θ = sin (θ + 30°) 0 ≤ θ ≤ 360°

Solution:

2 cos θ = sin (θ + 30°)

2 cos θ = sin θ cos 30° + cos θ sin 30°

2 cos θ = sin θ ×
3

2
+ cos θ ×  

1

2

2 cos θ −
1

2
 cos θ =

3

2
 sin θ

3

2
 cos θ =

3

2
 sin θ

3 cos θ = 3 sin θ

3

3
=  

sin θ
cos θ

tan θ =
3

3
= 3

θ = 60°,  240°

41.7 Double Angle Formulae

The Double Angle formulae are just special cases of the compound angle formulae where A = B. 

Recall also that . This gives rise to the following:cos2 θ + sin2 θ ≡ 1

sin 2A ≡ 2 sin A cos A  {A = B  sin (A + B)}in

cos 2A ≡ cos
2
A − sin

2
A     {A = B  cos (A + B)}in

cos 2A ≡ 2 cos
2
A − 1  {sin

2
A = 1 − cos

2
A}

cos 2A ≡ 1 − 2 sin
2
A   {cos

2
A = 1 − sin

2
A}

tan 2A ≡
2 tan A

1 − tan2A
     {A = B  tan (A + B)}in

 

cos
2
A ≡

1

2
(1 + cos 2A)   { }Re-arranging

sin
2
A ≡

1

2
(1 − cos 2A)

tan
2
A ≡

1 − cos 2A

1 + cos 2A
  { }see below

Notice how the double angle formulae, in the form of:

cos
2
A ≡

1

2
(1 + cos 2A)  sin

2
A ≡

1

2
(1 − cos 2A)  tan

2
A ≡

1 − cos 2A

1 + cos 2A

 act to reduce the power of ,  & . Think of these as the power reduction formulae.cos2A sin2A tan2A
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41.7.1  Example:

1 Show that:

tan
2θ ≡

1 − cos 2θ
1 + cos 2θ

Solution:
Using the LHS:

tan
2θ ≡

sin2 θ
cos2 θ

 ≡
1
2 (1 − cos 2θ)
1
2 (1 + cos 2θ)

 ≡
1 − cos 2θ
1 + cos 2θ

 ≡ RHS

2 Solve  for 1 − 2sin θ − 4cos 2θ = 0 θ 0 ≤ θ ≤ 360°between 

Solution:

1 − 2sin θ − 4cos 2θ = 0

1 − 2sin θ − 4 (1 − 2sin
2θ) = 0

1 − 2sin θ − 4 + 8sin
2θ = 0

8sin
2θ − 2sin θ − 3 = 0

(4sin θ − 3) (2sin θ + 1) = 0

∴ sin θ =
3

4
 or  sin θ = −

1

2

3 Simplify:

sin x
1 + cos x

Solution:

 sin A ≡ 2sin ½ A cos ½ A & cos A ≡ 2cos
2 ½ A − 1Now

sin x
1 + cos x

=
2sin ½ x cos ½ x

1 + 2cos2 ½ x − 1

     =
2sin ½ x cos ½ x

2cos2 ½ x

     =
sin ½ x
cos ½ x

     = tan ½ x
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4 Express  in terms of cosines of multiples of x.cos4x

Solution:

cos
4
A ≡ (cos

2
A)2

    ≡ (1

2
(1 + cos 2A))

2

    ≡
1

4
(1 + cos 2A)2

    ≡
1

4
(1 + 2cos 2A + cos

22A)

    ≡
1

4 (1 + 2cos 2A +
1

2
(1 + cos 4A))

    ≡
1

4 (1 + 2cos 2A +
1

2
+

1

2
cos 4A)

    ≡
1

8
(2 + 4cos 2A + 1 + cos 4A)

    ≡
1

8
(3 + 4cos 2A + cos 4A)

5 If  and  is acute, find the values of tan θ = 3
4 θ tan 2θ, tan 4θ, tan θ2

Solution:

To solve use  with tan 2A ≡
2tan A

1 − tan2A
A = θ,  A = 2θ, A = θ

2

A = θ,  tan 2θ ≡
2tan θ

1 − tan2θ
=

3
2

1 − 9
16

=
24

7

A = 2θ,  tan 4θ ≡
2tan 2θ

1 − tan22θ
=

2 (24
7 )

1 − (24
7 )2 = −

336

527

A =
θ
2

,  tan θ ≡
2tan θ

2

1 − tan2 θ
2

=
3

4
  (given)

   4 × 2tan 
θ
2

= 3 (1 − tan
2 

θ
2 )

   8 tan 
θ
2

= 3 − 3tan
2 

θ
2

   3tan
2 

θ
2

+ 8 tan 
θ
2

− 3 = 0

   (3tan 
θ
2

− 1) (tan 
θ
2

+ 3) = 0

∴   tan 
θ
2

=
1

3
 or tan 

θ
2

= −3

 ⇒ tan 
θ
2

 Now  is acute, hence  is acute θ
θ
2 is +ve

∴ tan 
θ
2

=
1

3
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6 Eliminate  from the equations .θ x ≡ cos 2θ, y ≡ sec θ

Solution:
Using cos 2A ≡ 2cos2A − 1

 x ≡ cos 2θ       y ≡ sec θ

 x ≡ 2cos
2θ − 1     y ≡

1

cos θ

              
1

y
≡ cos θ

∴  cos
2θ ≡ (1

y )
2

∴  x ≡ 2 (1

y )
2

− 1

 y
2
x ≡ 2 − y

2

 y
2
x + y

2 ≡ 2

 y
2 (x + 1) ≡ 2

7 Prove that:

tan θ + cot θ ≡
1

sin θ cos θ

Solution:
Using the LHS:

LHS ≡ tan θ + cot θ

 ≡
sin θ
cos θ

+
cos θ
sin θ

 ≡
sin θ sin θ +  cos θ cos θ

sin θ cos θ

 ≡
sin2θ +  cos2θ

sin θ cos θ

 ≡
1

sin θ cos θ

 ≡ RHS

8
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41.8 Triple Angle Formulae

This is just an extension of the compound angle identity, replacing A+B with 2A+A, which gives us:

sin 3A ≡ 3sin A − 4sin
3
A

cos 3A ≡ 4cos
3
A − 3cos A

tan 3A ≡
3tan A − tan3A

1 − 3tan2A

The same technique can be used to find other double combinations such as:

cos 6A ≡ cos
23A − sin

23A

41.8.1  Example:

1 Prove that:

sin 3A ≡ 3sin A − 4sin
3
A

Solution:
Using the LHS:

sin 3A ≡ sin (2A + A)

    ≡ sin 2A cos A + cos 2A sin A

    ≡ (2sin A cos A) cos A + (1 − 2sin
2
A) sin A

    ≡ 2sin A cos
2
A + sin A − 2sin

3
A

    ≡ 2sin A (1 − sin
2
A) + sin A − 2sin

3
A

    ≡ 2sin A − 2sin
3
A + sin A − 2sin

3
A

    ≡ 3sin A − 4sin
3
A

    ≡ RHS

2 Prove that:

cos 3A ≡ 4cos
3
A − 3cos A

Solution:
Using the LHS:

cos 3A ≡ cos (2A + A)

    ≡ cos 2A cos A + sin 2A sin A

    ≡ (2cos
2
A − 1) cos A + (2sin A cos A) sin A

    ≡ 2cos
3
A − cos A − 2sin

2
A cos A

    ≡ 2cos
3
A − cos A − 2 (1 − cos

2
A) cos A

    ≡ 2cos
3
A − cos A − 2cos A + 2cos

3
A

    ≡ 4cos
3
A − 3cos A

    ≡ RHS
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41.9 Half Angle Formulae

This is an extension of the double angle identity, replacing A with .A
2

This is easily derived:

   cos 2A ≡ 2cos
2
A − 1

   cos A ≡ 2cos
2 

A

2
− 1   A =

A

2
substitute

   cos
2 

A

2
≡

1

2
(1 + cos A)

Similarly for .sin 2A

sin
2 

A

2
≡

1

2
(1 − cos A)

cos
2 

A

2
≡

1

2
(1 + cos A)

tan 
A

2
≡

1 − cos A
sin A

=
sin A

1 + cos A

41.9.1  Example:

1
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41.10 Factor Formulae

Using the Factor formulae any sum or difference of sines or cosines can be expressed as a product of sines and
cosines. Called the factor formulae because factorising an expression means converting it into a product.

The factor formulae are found easily enough: take two compound angle formulae, for either the sine or cosines,
and add or subtract the identities.

   sin (A + B) ≡ sin A cos B + cos A sin B  (1)

   sin (A − B) ≡ sin A cos B − cos A sin B  (2)

Add identities (1) & (2)

   sin (A + B) + sin (A − B) ≡ 2 sin A cos B      (1 + 2)

      A + B = P A − B = QLet:

∴  A =
P + Q

2
 B =

P − Q

2

     sin P + sin Q ≡ 2 sin (P + Q

2
 ) cos (P − Q

2 )

Similar results can be obtained for  and .(sin P − sin Q) (cos P ± cos Q)

Sum to Product rules:

sin A + sin B = 2 sin (A + B

2 )  cos (A − B

2 )
   sin A − sin B = 2 cos (A + B

2 )  sin (A − B

2 )
   cos A + cos B = 2 cos (A + B

2 )  cos (A − B

2 )
   cos A − cos B = −2 sin (A + B

2 )  sin (A − B

2 )
     cos A − cos B = 2 sin (A + B

2 )  sin (B − A

2 )  Note the gotcha in the signsOr

Alternative format:

An alternative format in terms of A & B is as follows:

   sin (A + B) + sin (A − B) = 2sin A cos B

   sin (A + B) − sin (A − B) = 2cos A sin B

   cos (A + B) + cos (A − B) = 2cos A cos B

   cos (A + B) − cos (A − B) = −2sin A sin B

Product to Sum rules:

These can be re-arranged to give a product to sum rule, which is useful for integration.

   2sin A cos B = sin (A + B) + sin (A − B)
   2cos A sin B = sin (A + B) − sin (A − B)
   2cos A cos B = cos (A + B) + cos (A − B)
     − 2sin A sin B = cos (A + B) − cos (A − B)
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41.10.1  Example:

1 Show that:

tan 2θ ≡
sin θ + sin 3θ
cos θ + cos 3θ

Solution:
Using the RHS:

sin θ + sin 3θ
cos θ + cos 3θ

≡
2 sin (θ + 3θ

2  ) cos (θ − 3θ
2 )

2 cos (θ + 3θ
2  ) cos (θ − 3θ

2 )

       ≡
sin (4θ

2  )
cos (4θ

2  )

       ≡
sin (2θ )
cos (2θ )

       ≡ tan 2θ
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41.11 Topical Tips on Proving Identities

There are a number of guidelines you can use in order to prove identities. There are four basic methods:

j Start with the LHS and work towards the RHS expression.

j Start with the RHS and work towards the LHS expression.

j Subtract one side from the other and set the expression to zero

j Divide one side by the other and make the expression equal to one.

j Some general advice:

j As a guide start with the most complicated side first

j Note the fuctions that are in the expression you are aiming towards and work towards converting to
those functions

j Recognise opportunities to use the basic identities

j Pairings of sines & cosines; secants & tangents; and cosecants & cotangents, work well together

j Proving identities is not the same as solving equations. You cannot add or subtract quantities to
both sides or cross multiply as you cannot assume that the given identity is, in fact, equal.
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41.12 Trig Identity Digest

41.12.1 Trig Identities

   sin θ ≡ cos (1

2
π − θ)  sin x = cos (90° − x)

   cos θ ≡ sin (1

2
π − θ)  cos x = sin (90° − x)

   tan θ ≡
sin θ
cos θ

41.12.2 Pythagorean Identities

   cos
2 θ + sin

2 θ ≡ 1        (1)

   1 + cot
2 θ ≡ cosec

2 θ   (  sin
2 θ)Division of (1) by

   1 + tan
2 θ ≡ sec

2 θ        ( cos
2 θ)Division of (1) by 

41.12.3 Compound Angle (Addition) Identities

   sin (A ± B) ≡ sin A cos B ± cos A sin B

   cos (A ± B) ≡ cos A cos B ∓ sin A sin B

   tan (A ± B) ≡
tan A ± tan B

1 ∓ tan A tan B

41.12.4 Double Angle Identities

   sin 2A ≡ 2 sin A cos A

   cos 2A ≡ cos
2
A − sin

2
A

        ≡ 2 cos
2
A − 1     (sin

2 θ = 1 − cos
2 θ)

        ≡ 1 − sin
2
A  (cos

2 θ = 1 − sin
2 θ)

   tan 2A ≡
2tan A

1 − tan2A

41.12.5 Triple Angle Identities

   sin 3A ≡ 3sin A − 4sin
3
A

   cos 3A ≡ 4cos
3
A − 3cos A

   tan 3A ≡
3tan A − tan3A

1 − 3tan2A
 

41.12.6 Half Angle Identities

   cos
2 

A

2
≡

1

2
(1 + cos A)

   sin
2 

A

2
≡

1

2
(1 + cos A)
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41.12.7 Factor formulæ:

Sum to Product rules:

   sin A + sin B = 2 sin (A + B

2 )  cos (A − B

2 )
   sin A − sin B = 2 cos (A + B

2 )  sin (A − B

2 )
   cos A + cos B = 2 cos (A + B

2 )  cos (A − B

2 )
   cos A − cos B = −2 sin (A + B

2 )  sin (A − B

2 )
  cos A − cos B = 2 sin (A + B

2 )  sin (B − A

2 )  Note the gotcha in the signsOr

Alternative format:

   sin (A + B) + sin (A − B) = 2sin A cos B

   sin (A + B) − sin (A − B) = 2cos A sin B

   cos (A + B) + cos (A − B) = 2cos A cos B

   cos (A + B) − cos (A − B) = −2sin A sin B

Product to Sum rules:

   2sin A cos B = sin (A + B) + sin (A − B)
   2cos A sin B = sin (A + B) − sin (A − B)
   2cos A cos B = cos (A + B) + cos (A − B)
     − 2sin A sin B = cos (A + B) − cos (A − B)

41.12.8 Small t Identities

   t = tan ½θIf

   sin θ ≡
2t

1 + t2

   cos θ ≡
1 − t2

1 + t2

   tan θ ≡
2t

1 − t2
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42.1 Inverse Trig Functions Intro

The basic Inverse Trig Functions are . sin−1x, cos−1x, tan−1xand 

Now  reads as “the angle whose sin is…” sin−1x

similarly  reads as “the angle whose cos is…” cos−1x

and  reads as “the angle whose tan is…” tan−1x

For the avoidance of doubt, the reciprocal of a trig function is written, for example, as
.(sin x)−1

Hence,

  sin θ = 0·5If

   θ = sin
−1 (0·5)

   θ = 30°

sin
−1

x i.e. the angle whose sin is 0·5 is 30° Remember that is an angle.

An alternative way of writing , so we can say that:θ = sin−1x   θ = arcsin xis

   sin θ =  x ⇒  θ = arcsin x

   cos θ =  x ⇒  θ = arccos x

   tan θ =  x ⇒  θ = arctan x

For a inverse function to exist, recall that the function and its inverse must have a one to one relationship or
mapping. The functions of  are many to one mappings, so any inverse mapping will be
many to one. 

sin x, cos x,  tan xand

However, if we restrict the domain, then we can create a one to one relationship and the two curves will be a
reflection of each other about the line .y = x

There are, of course, an infinite number of solutions to a trig function, but restricting the domain gives only one
solution called the principal value which is the one given on a calculator.

Restrictions imposed on the main trig functions are:

Funtion Domain ° Domain (radians)

y = sin θ −90 ≤ θ ≤  90 −π
2 ≤ θ ≤ π

2

y = cos θ      0 ≤ θ ≤ 180   0 ≤ θ ≤ π

y = tan θ −90 ≤ θ ≤  90 −π
2 ≤ θ ≤ π

2
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42.2 Inverse Sine Function

The reflection of  in the line 

give the inverse which is a one to many relationship or
mapping and is therefore not a function.

y = sin x y = x

p/2 p

y = sin x

o

p

x

y

y = sin−1 x

y = x

Restrict the domain of  to:

 

and the range becomes:

The inverse function is now created, with a domain of

and a range of 

 

y = sin x

−
π
2

≤ x ≤
π
2

−1 ≤ sin x ≤ 1

−1 ≤ x ≤ 1

−
π
2

≤ sin
−1

x ≤
π
2

p/2

y = sin x

o x

y y = sin−1 x

p/2

�-p/2

y = x

-p/2
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42.3 Inverse Cosine Function

The reflection of  in the line y = cos x y = x

p/2 p

y = cos x

o

p

x

y

y = cos−1 x y = x

Restrict the domain of  to:

 

and the range becomes:

The inverse function is now created, with a domain of

and a range of 

 

y = cos x

0 ≤ x ≤ π

−1 ≤ cos x ≤ 1

−1 ≤ x ≤ 1

−
π
2

≤ cos
−1

x ≤
π
2

p/2

y = cos x

o x

y

y = cos−1 x
p/2

�-p/2

y = x

-p/2
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42.4 Inverse Tangent Function

The reflection of  in the liney = tan x
y = x

p/2 p 3p/2 x

y

p

�-p

�-p

O

y = tan−1 x

y = tan x

y = x

Restrict the domain of  to:

 

and the range becomes:

The inverse function is now created, with
a domain of

and a range of 

 

y = tan x

−
π
2

≤ x ≤
π
2

tan x ∈ R

x ∈ R

−
π
2

≤ tan
−1

x ≤
π
2

y

x

p/2

-p/2

O

y = tan−1 x

y = tan x

y = x

p/2-p/2
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42.5 Inverse Trig Function Summary Graphs

Function Properties Illustration

y = sin−1 x

y = arcsin x

Inverse Sine Function:

Odd function

Restricted Domain: 

Range: 

Intercept: (0, 0)

Symmetric about the origin − has

rotational symmetry, order 2.

Increasing function

−1 ≤ x ≤ 1

− 
π
2

≤ sin
−1

x ≤
π
2

−1 1

p/2

y

-p/2

y = sin−1 x

x

y = cos −1 x

y = arccos x

Inverse Cosine Function:

Restricted Domain: 

Range: 

y-intercept 

Decreasing function

−1 ≤ x ≤ 1

0 ≤ cos
−1

x ≤ π

(0,
π
2 )

−1 1

p/2

p

y

y = cos−1 x

x

y = tan −1 x

y = arctan x

Inverse Tangent Function:

Odd function

Domain: 

Range: 

Intercept (0, 0)

Horizontal asymptotes: 

Symmetric about the origin − has

rotational symmetry order 2.

Increasing function

x ∈ R

−
π
2

≤ tan
−1

x ≤
π
2

y = ± 
π
2

y

p/2

-p/2

O

y = tan−1 x
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43.1 Form of a cos x + b sin x

Using the compound angle identity , then any function of the form
 can be written as  where  and angle  is acute. 

sin (A ± B) ≡ sin A cos B ± cos A sin B
a cos x + b sin x R sin (x + α) R > 0 α

We also find that  and .R = a2 + b2 tan α = b
a

a sin x + b cos x = R sin (x + α)

This new form of function is useful in solving equations, especially when finding max & min values, as well as
sketching graphs of the form . This is often called the harmonic form.y = a sin x + b cos x

Plotting an equation of the form  gives a sinusoidal wave form, which appears as a translation of
sin x, which in this case, is translated in the negative x direction by a factor of  and stretched in the y direction
by the factor R.

a cos x + b sin x
α

Example:

3 sin x + 4 cos x ≡ 5 sin (x + 53.1°)

Compare with:

a sin x + b cos x = R sin (x + α)

90 180 270

−1

1

p/2 p 3p/2

y = sin x

360

2p

y

y = 3sin x + 4 cos x = 5 sin (x + 53.1°)

5

−5

53.1°

× 5 (R)

× 1

a

a sin x + b cos x
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43.2 Proving the Identity

Show that the following are true:

•      a sin x + b cos x ≡ R sin (x + α)

•     R = a2 + b2

•     α = tan
−1 

b

a

Take the RHS and use the Compound Angle Identity to expand expression

   R sin (x + α) = R (sin x cos α + cos x sin α)

      = R sin x cos α + R cos x sin α

      = R cos α sin x + R sin α cos x

R cos α & R sin α Since R and  are both constants, therefore, α are both constants.

  R sin (x + α) = a sin x + b cos xHence we can say:

Equate the coefficients on the RHS:

      a = R cos α    (1)where 

   &    b = R sin α     (2)

    
R sin α
R cos α

=
b

a
Divide (1) & (2)

   ∴ tan α =
b

a

        α = tan
−1 

b

a

Take (1) & (2) and square and add:

   R
2
cos

2 α = a
2

   R
2
sin

2 α = b
2

   R
2
cos

2 α + R
2
sin

2 α = a
2 + b

2

   R
2 (cos

2α + sin
2α) = a

2 + b
2

 (cos
2α + sin

2α) = 1but

∴   R
2 = a

2 + b
2

∴   R = a2 + b2

a

bÚ a
2  +

 b
2

a
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43.3 Geometric View of the Harmonic Form

Consider the diagram below:

h

a

b

R

q

a

b cos 

a sin q

q

q
R sin (q + a)

Geometric View of the Harmonic Form

   h = a sin θ + b cos θ

   h = R sin (θ + α)

 ∴     a sin θ + b cos θ = R sin (θ + α)

Sometimes dressed up as a door through a hole problem:-)

43.4 Choosing the Correct Form

The key is to choose a method that ensures  is acute.α

  R sin (x + α) ≡ R sin x cos α + R cos x sin α  a sin x + b cos xuse for

  R sin (x − α) ≡ R sin x cos α − R cos x sin α  a sin x − b cos xuse for

  R cos (x + α) ≡ R cos x cos α − R sin x sin α  a cos x − b sin xuse for

  R cos (x − α) ≡ R cos x cos α + R sin x sin α  a cos x + b sin xuse for

  a sin x + b cos x ≡ R sin (x + α)

  a sin x − b cos x ≡ R sin (x − α)

  a cos x − b sin x ≡ R cos (x + α)

  a cos x + b sin x ≡ R cos (x − α)

Note that  has two solutions, as  and .a sin x + b cos x a sin x + b cos x a cos x + b sin x

  a sin x + b cos x ≡ R sin (x + α)  ⇒ R cos α = a R sin α = b          }

  a sin x − b cos x ≡ R sin (x − α)  ⇒ R cos α = a − R sin α = −b }    tan α =
b

a

  a cos x − b sin x ≡ R cos (x + α)  ⇒ R cos α = a − R sin α = −b }

  a cos x + b sin x ≡ R cos (x − α)  ⇒ R cos α = a R sin α = b          }

Note that  is positive in each case.tan α
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43.5 Worked Examples

43.5.1  Example:

1 Express  in the  form.cos θ − sin θ R cos (θ ± α)

Solution:

   cos θ − sin θ ≡ R cos (θ + α)

   cos θ − sin θ ≡ R (cos θ cos α −  sin θ sin α)

   cos θ − sin θ ≡ R cos θ cos α −  R sin θ sin α

Equate the coefficients:

   1 = R cos α

   1 = R sin α

   tan α =
R sin α
R cos α

=
1

1
= 1

   α = 45°

= 2From pythag, hypotenuse 

  ∴ cos θ − sin θ ≡ 2 cos (θ + 45°)

2 Express  in the  form.5 cos θ + 12 sin θ R cos (θ ± α)

Solution:

   5 cos θ + 12 sin θ ≡ R cos (θ − α)

   5 cos θ + 12 sin θ ≡ R cos θ cos α +  R sin θ sin α

Equate the coefficients:

   5 = R cos α

   12 = R sin α

   tan α =
R sin α
R cos α

=
12

5

    α = 67·4°

= 122 + 52 = 13From pythag, hypotenuse 

  ∴ 5 cos θ + 12 sin θ ≡ 13 cos (θ − 67·4°)

3 Express  in the  form.5 sin θ − 8 cos θ R sin (θ ± α)

Solution:

   5 sin θ − 8 cos θ ≡ R sin (θ − α)

       ≡ R sin θ cos α −  R cos θ sin α   

5 = R cos αEquate the coefficients:

   8 = R sin α

   tan α =
R sin α
R cos α

=
8

5

   α = 58°

= 82 + 52 = 89From pythag, hypotenuse 

 ∴  5 sin θ − 8 cos θ ≡ 89 sin (θ + 58°)
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43 • C3 •  Trig: Harmonic Form

4 Solve  (for 0° to 360°)cos θ − 7sin θ = 2

Solution:

   cos θ − 7sin θ ≡ R cos (θ + α)

   cos θ − 7sin θ ≡ R (cos θ cos α −  sin θ sin α)

   cos θ − 7sin θ ≡ R cos θ cos α −  R sin θ sin α

1 = R cos αEquate the coefficients:

          7 = R sin α

   tan α =
R sin α
R cos α

=
7

1
= 7

          α = 81·9°

= 50From pythag, hypotenuse 

  ∴   cos θ − 7sin θ ≡ 50 cos (θ + 81·9°)

cos θ − 7sin θ = 2But

  ∴     50 cos (θ + 81·9) = 2

   θ + 81·9 = cos
−1 2

50 

   θ + 81·9 = 73·57,  286·43,  433·87

           θ = −8·33,  204·53,  351·67

Discount the first solution of −8.2 as this is outside the required range.

5 Express  in the  form, and show that 5 sin θ + 12 cos θ R sin (θ + α) 5 sin θ + 12 cos θ + 7 ≤ 20

Solution:

   5 sin θ + 12 cos θ ≡ R sin (θ + α)

   5 sin θ + 12 cos  θ ≡ R sin θ cos α +  R cos θ sin α 

5 = R cos αEquate the coefficients:

   12 = R sin α

   tan α =
R sin α
R cos α

=
12

5

   α = 67·4°

= 122 + 52 = 13From pythag, hypotenuse 

 ∴   5 sin θ + 12 cos θ ≡ 13 sin (θ + 67·4°)

   − 1 ≤ sin (θ + 67·4) ≤ 1

   − 13 ≤ 13 sin (θ + 67·4) ≤ 13

   − 13 ≤ (5 sin θ + 12 cos θ) ≤ 13

   − 13 + 7 ≤ (5 sin θ + 12 cos θ + 7) ≤ 13 + 7

   − 6 ≤ (5 sin θ + 12 cos θ + 7) ≤ 20

 (5 sin θ + 12 cos θ + 7) ≤ 20Hence:
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6 Find the minimum & maximum values of  and the corresponding values of cos θ − 7sin θ θ

Solution:
From a previous example above:

   cos θ − 7sin θ ≡ 50 cos (θ + 81·9°)

   − 1 ≤ cos (θ + 81·9) ≤ 1

   −  50 ≤ 50 cos (θ + 81·9) ≤ 50 

  ∴    −  50 ≤ (cos θ − 7sin θ) ≤ 50 

  ∴  (cos θ − 7sin θ) − 50 Min value of   is

 cos (θ + 81·9) = −1Min value occurs when:

   θ + 81·9 = 180°

   θ = 180° − 81·9 

   θ = 98·1°

− 50  θ = 98·1°Min value of occurs when 

  ∴  (cos θ − 7sin θ)    50 Max value of   is

 cos (θ + 81·9) = 1Min value occurs when:

   θ + 81·9 = 0°

   θ = −81·9°,  278·1 

   θ = 278·1°

50  θ = 278·1°Max value of occurs when 

7 Find the minimum & maximum values of  and the corresponding values of 2 sin θ + 7 cos θ θ

Solution:

  2 sin θ + 7 cos  θ ≡ 53 cos (θ − 15·9°)Find that:

   − 1 ≤ cos (θ − 15·9°) ≤ 1

   −  53 ≤ 53  cos (θ − 15·9°) ≤ 53 

  ∴    −  53 ≤ (2 sin θ + 7 cos  θ) ≤ 53 

  ∴   (2 sin θ + 7 cos  θ)  − 53 Min value of is

  cos (θ − 15·9°) = −1Min value occurs when:

   θ − 15·9 = 180°

   θ = 180° + 15·9 

   θ = 195·9°

∴ − 53  θ = 195·9°Min value of occurs when 

     2 sin θ + 7 cos θ    53 Max value of   is

  cos (θ − 15·9°) = 1Min value occurs when:

   θ − 15·9 = 0°

   θ = 15·9° 

53  θ = 15·9°Max value of occurs when 
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8 Express  in the  form.3 cos θ − 2 sin θ R cos (θ ± α)

Solution:

   3 cos θ − 2 sin θ ≡ R cos (θ + α)

 a cos x − b sin x  R cos (x + α) ≡ R cos x cos α − R sin x sin α for use

   3 cos θ − 2 sin θ ≡ R cos θ cos α − R sin θ sin α

Equate the coefficients:

   3 = R cos α

   2 = R sin α

   tan α =
b

a
=

2

3

   α = 33·7°

= 32 + 22 = 13From pythag, hypotenuse 

  ∴   3 cos θ − 2 sin θ ≡ 13 cos (θ − 33·7°)

Note: The tangent above is not negative.
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43.6 Harmonic Form Digest

      a sin x ± b cos x ≡ R sin (x ± α)

      a cos x ± b sin x ≡ R cos (x ∓ α)  (watch signs)

      R = a2 + b2 R cos α = a R sin α = b

      tan α =
b

a
  0 < a <

π
2

Recall

      sin (A ± B) ≡ sin A cos B ± cos A sin B

      cos (A ± B) ≡ cos A cos B ∓ sin A sin B

   R sin (x + α) ≡ R sin x cos α + R cos x sin α  a sin x + b cos xuse for

   R sin (x − α) ≡ R sin x cos α − R cos x sin α  a sin x − b cos xuse for

   R cos (x + α) ≡ R cos x cos α − R sin x sin α  a cos x − b sin xuse for

   R cos (x − α) ≡ R cos x cos α + R sin x sin α  a cos x + b sin xuse for
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44 • C3 • Relation between dy/dx and dx/dy

44.1 Relation between dy/dx and dx/dy

It is very tempting to think that  is a fraction, and treat it as such.
dy
dx

Strictly speaking  is a function, and should not be confused with a fraction, although in practise it often

appears to behave like one.

dy
dx

Deriving the link between  and  is as follows:
dy
dx

dx
dy

From C1 recall that a derivative of a function is defined as:

      
dy

dx
=

δx → 0
  

δy

δx
lim

δy

δx
 Now is a fraction, hence:

      
dy

dx
=

δx → 0
  

1
δx
δy

lim

δx → 0  δy → 0As then

      
dy

dx
=

1

δy → 0
  δx

δy

=
1
dx
dylim

    
dy

dx
=

1
dx
dy

Hence

     
dy

dx
×

dx

dy
= 1or

E.g. Consider: 

 y = ax + b  ⇒  
dy

dx
= a

 Rearrange to make x the subject:

 x =
y − b

a

 x =
y

a
−

b

a
  ⇒   

dx

dy
=

1

a

∴ 
dy

dx
×

dx

dy
= a ×

1

a

        = 1
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44.2 Finding the Differential of x = g(y)

Don’t assume that every differential has to start with a 
dy
dx

44.2.1  Example:

1 Find the gradient of  at the point (7, 1).x = y3 + 6y

Note that a gradient is given as .
dy
dx

Solution:

    
dx

dy
= 3y

2 + 6

y = 1  
dx

dy
= 3 × 1 + 6 = 9At 

       
dy

dx
=

1
dx
dy

Recall:

∴                
dy

dx
=

1

9

2 Find the differential of y = ln x

Solution:

   y = ln x

   e
y = x

   x = e
y

   
dx

dy
= e

y

  
dy

dx
=

1
dx
dy

But

   
dy

dx
=

1

ey

   
dy

dx
=

1

x

  
d [ln x]

dx
=

1

x
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44 • C3 •  Relation between dy/dx and dx/dy

44.3 Finding the Differential of an Inverse Function

This relationship can be used to find the differential of an inverse function. Recall that for a one to one

function there is an inverse relationship. We can treat either x or y as the dependent variable.

dy
dx

= 1
dx
dy

 

We can, therefore, write:

    y = f (x)  ⇒  x = f
−1 (y)

The differential of the function and its inverse is linked by the relationship:

dy

dx
=

1
dx
dy

The advantage of this relationship is that you don’t need to know the exact inverse function.

44.3.1  Example:

1 Find the gradient of the inverse function at the point (2, 1), where the function is defined as
.f (x) = x4 + 3x2 − 2

Solution:

  y = f (x)  ⇒  x = f
−1 (y)

  y = x
4 + 3x

2 − 2

  x = y
4 + 3y

2 − 2

 Rearranging to make y the subject is not required since:

    
dx

dy
= 4y

3 + 6y

∴       
dy

dx
=

1

4y3 + 6y

     
dy

dx
=

1

4 + 6
=

1

10

2
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45 • C3 • Differentiation: The Chain Rule

45.1 Composite Functions Revised

Recall that a composite function, otherwise known as a ‘function of a function’, is formed by applying one
function, then immediately applying another function to the result of the first function.

In simple terms: 

 x  →
f

 f (x)Input output 

 f (x)   →
g

 g [ f (x)]   g f (x) Input output or 

In other words, apply f to x first, then g to f(x). You read the result, , from right to left.g f (x)

E.g. If  then y is said to be a function of x.y = (x + 3)3

If we make  then  and so y is a function of u and u is a function of x.u = x + 3 y = u3

In function notation we would write:

F (x) = g f (x)

where  and g (u) = u3 f (x) = x + 3

Reading a function of a function:
is a cubic function g, of a quadratic function f(x2 − 4)3

is a square root function g, of a cubic function f(1 − x)3

45.2 Intro to the Chain Rule

We have seen from earlier modules that in order to differentiate a polynomial such as  we can use the
Binomial theorem to expand the brackets and differentiate each term individually. However, a problem arises if
we want to differentiate something like .  Using the Binomial theorem would be tedious to say the
least, but as always in mathematics, there is generally an easier way.

(2x + 3)3

(2x + 3)42

The answer to this and many other problems involving composite functions is the chain rule, which is given as:

dy

dx
=

dy

du
×

du

dx

where y is a function of u and u is a function of x.

In function terminology we write

F′ (x) = g′ (f (x)) × f ′ (x)

 F (x) = g f (x)    F (x) = g (u)   u = f (x)where and and

In other words, if  is the outside function and  is the inside function we differentiate the outside function
and multiply by the differential of the inside function.

g (u) f (x)
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45.3 Applying the Chain Rule

Typical examples of composite functions that can be differentiated by the chain rule are:

(x2 − 4)3  (1 − x3) e
2x + 5 ln (3x

2 − 2)  
1

(x2 − 4)3

45.3.1  Example: 

1 Find  when 
dy

dx
y = (x2 − 4)5

Solution:

         y = (x2 − 4)5

⇒   u = x
2 − 4 ⇒    y = u

5

∴  
du

dx
= 2x    

dy

du
= 5u

4

∴  
dy

dx
=

dy

du
×

du

dx
= 5u

4 × 2x

∴  
dy

dx
= 10x (x2 − 4)4

Alternative Solution:

 
dy

dx
=

d

du
(u5) ×

d

dx
(x2 − 4) = 5 (x2 − 4)4

× 2x   etc

2 Find  when 
dy

dx
y = (1 − x3)

Solution:

                  y = (1 − x3) ⇒  y = (1 − x
3)

1
2

⇒   u = 1 − x
3 ⇒       y = u

1
2

∴  
du

dx
= −3x

2    
dy

du
=

1

2
u

−1
2

∴  
dy

dx
=

dy

du
×

du

dx
=

1

2
u

−1
2 × (−3x

2)

∴  
dy

dx
= −

3

2
x

2 (1 − x
3)−1

2

           = −
3x2

2 (1 − x3)

Alternative Solution:

 
dy

dx
=

d

du
(u1

2) ×
d

dx
(1 − x

3) =
1

2
(1 − x

3)−1
2 × (−3x

2)   etc
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45 • C3 •  Differentiation: The Chain Rule

3 Find  when 
dy

dx
y = ln (3x2 − 2)

Solution:

         y = ln (3x
2 − 2)

⇒   u = 3x
2 − 2 ⇒  y = ln u

∴  
du

dx
= 6x    

dy

du
=

1

u

∴  
dy

dx
=

dy

du
×

du

dx
=

1

u
× 6x

∴  
dy

dx
=

6x

3x2 − 2

4 Find  when 
dy

dx
y = e2x + 5

Solution:

         y = e
2x + 5

⇒   u = 2x + 5 ⇒  y = e
u

∴  
du

dx
= 2    

dy

du
= e

u

∴  
dy

dx
=

dy

du
×

du

dx
= e

u × 2

∴  
dy

dx
= 2e

2x + 5

5 Take the parametric curve defined by  . Point P has the coordinates, .
Find the gradient at point P:

x = 2t2 & y = 4t (2p2,  4p)

Solution:
Draw a sketch!!!!!!

 t =
y

4
   ⇒

 x = 2 ( y

4)
2

 ⇒

 y
2 = 8x

8070605040302010

-20

0

20
P (2p2, 4p)

y

x

        x = 2t
2   y = 4t

∴  
dx

dt
= 4t 

dy

dt
= 4

∴  
dy

dx
=

dy

dt
×

dt

dx
= 4 ×

1

4t
=

1

t

P (2p
2,  4p) ;  y = 4p ⇒  ∴ 4p = 4t ⇒  p = tAt point 

 P =
1

p
The gradient at point
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45.4 Using the Chain Rule Directly

After some practise, it is possible to use the chain rule with out formally writing down each stage. We can
express this by writing the rule as:

  y = u
nIf

    
dy

dx
=

dy

du
×

du

dx

         =
d [un]

du
×

du

dx

         = n un − 1 


du

dx





45.4.1  Example: 

y = (6x + 8)4  ⇒  
dy

dx
= 4 (6x + 8)3 × 6

y = (ax + b)n  ⇒  
dy

dx
= n (ax + b)3 × a

y = ln (4x − 1)      ⇒         
dy

dx
=

1

4x − 1
× 4 =

4

4x − 1

y = 4e3x + 2 ⇒  
dy

dx
=

1

2
[4e

3x + 2]−1
2 × 12e

3x =
6e3x

4e3x + 2

y =
1

x4 + 2
       ⇒        

dy

dx
= −1 [x

4 + 2]−2
× 4x

3 = − 
4x3

(x4 + 2)2

y = ln kx           ⇒        
d

dx
=

1

kx
× k =

1

x

y = ln (ax + b)      ⇒        
d

dx
=

1

ax + b
× a =

a

ax + b
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45 • C3 •  Differentiation: The Chain Rule

45.5 Related Rates of Change

See also 50 • C3 • Differentiation: Rates of Change

The Chain Rule is a powerful way of connecting the rates of change of two dependent variables.

Consider a sphere, in which the volume is increasing at a given rate. Since the volume of the sphere is connected
to the radius, how can the rate of increase in the radius be calculated?

If we are given the rate of increase in the volume, we have a value for  The volume is connected to the radius

via the function:

dV
dt

.

V =
4

3
πr

3  
dV

dr
= 4πr

2and hence

The required rate of increase in the radius is given by . We can connect all these related rates of change using

the chain rule such that:

dr
dt

dV

dt
=

dV

dr
×

dr

dt

dV

dt
= 4πr

2 ×
dr

dt

If the volume is increasing at   and  at time t, then:980 cm3 per hour r = 7 cm

       980 = 4π × 49 ×
dr

dt

       
dr

dt
=

980

196π
=

5

π
= 1·59 cm / hour

45.5.1  Example:

1 Let A be the surface area of a spherical balloon. What is the rate of increase in the surface area of
the balloon when the radius r is 6 cm, and the radius is increasing at 0·08 cm/sec?

Solution:
We want to find , and we know that dA

dt
A = 4πr2

dA

dr
= 8πr

dA

dt
=

dA

dr
×

dr

dt

dA

dt
= 8π × 6 × 0·08

dA

dt
= 3·84π / seccm2
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2 An ice cube of side, 6x cm, melts at a constant rate of 0·8 cm3/min. 

Find the rate at which x and the surface area A changes with time, when x = 2

Solution:
We want to find dx

dt
 & dA

dt

The volume of the cube is V = (6x)3       ⇒ 216x3

The surface area of the cube is  A = 6 (6x)2  ⇒ 216x2

 
dV

dt
=

dV

dx
×

dx

dt
= −0·8  Now: (Negative as it is a decreasing value)

  − 0·8 = 3 × 216x
2 ×

dx

dt

dx

dt
= − 

0·8

3 × 216 × 4
= − 0·000308 cm/min

      
dA

dt
=

dA

dx
×

dx

dt
Also: 

  
dA

dt
= 2 × 216x × (− 

0·8

3 × 216 × 4)
  

dA

dt
= 2 × 216 × 2 × (− 

0·8

3 × 216 × 4)
  

dA

dt
= (− 

0·8

3 ) = − 0·267 cm2/min

3
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45 • C3 •  Differentiation: The Chain Rule

45.6 Deriving the Chain rule

Start with a composite function of  where   and . An increase in x by a small
amount  means a corresponding increase in u, by a small amount and hence y by .

y = gf (x) y = g (u) u = f (x)
δx δu δy

 
dy

dx
=

δx → 0

 
δy

δx
Now lim

Since  can be handled algebraically, we have:δy,  δu,  δx

        
δy

δx
=

δy

δu
×

δu

δx

   ∴ 
dy

dx
=  

δx → 0

 ( δy

δu
×  

δu

δx )lim

 δx → 0,  δu → 0As

   ∴ 
dy

dx
=  

δu → 0

 ( δy

δu) ×
δx → 0

 (δu

δx )lim lim

   ∴ 
dy

dx
=

dy

du
×

du

dx
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45.7 Chain Rule Digest

Used to differentiate composite functions.

If y is a function of u and u is a function of x then:

dy

dx
=

dy

du
×

du

dx

In function terminology:

F′ (x) = g′ (f (x)) × f ′ (x)

 F (x) = g f (x)    F (x) = g (u)   u = f (x)where and and

dy

dx
=

d [g (u)]
du

×
du

dx

d

dx
[f (x)]n = n [f (x)]n − 1

f ′ (x)

d

dx
k [f (x)]n = kn [f (x)]n − 1

f ′ (x)

d

dx
(ax + b)n = an (ax + b)n − 1

d

dx
[e

f (x)] =
d [f (x)]

du
× e

f (x)   ⇒   = f ′ (x) e
f (x)

d

dx
[ke

f (x)] = k 
d [f (x)]

du
× e

f (x) ⇒  = kf ′ (x) e
f (x)

d

dx
[e

x] = e
x

d

dx
[e

kx] = ke
kx

d

dx
[e

ax + b] = ae
ax + b

d

dx
[ln f (x)] =

f ′ (x)
f (x)

 

d

dx
[k ln f (x)] = k 

f ′ (x)
f (x)

 

d

dx
[ln x] =

1

x

d

dx
[ln kx] =

1

x

d

dx
[ln (ax + b)] =

a

ax + b
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46 • C3 • Differentiation: Product Rule

46.1 Differentiation: Product Rule

Assume y to be a function of x such that . Then consider y to be a product of two functions u and v,
which themselves are also functions of x. 

y = f (x)

We now have:

y = uv where u and v are functions of x

In this situation, where y is a product of two functions we use the Product Rule, thus:

dy

dx
= u

dv

dx
+ v

du

dx

 
du

dx
 xwhere is u differentiated w.r.t 

 & 
dv

dx
 xis v differentiated w.r.t 

 y = f (x) g (x)  
dy

dx
= f (x) g′ (x) + f ′ (x) g (x)In function notation the rule is

 (uv) ′ = uv′ + vu′  or 

Note: other text books sometimes have the product rule laid out slightly differently. Use whatever you find
comfortable learning. e.g.

      
dy

dx
= v

du

dx
+ u

dv

dx

46.2 Deriving the Product Rule

Starting with  and increasing x by a small amount , with corresponding increases in y, u and v, we
have:

y = uv δx

y + δy = (u + δu) (v + δv)

 y = uv   uv + δy = uv + uδv + vδu + δuδvSubstituting

  δy = uδv + vδu + δuδvSubtracting uv from both sides

δx            
δy

δx
= u

δv

δx
+ v

δu

δx
+

δv

δx
δuDivide by 

 δx → 0 
δy

δx
→

dy

dx
,   

δu

δx
→

du

dx
,   

δv

δx
→

dv

dx
,  δu → 0As

 
δx → 0

 
δy

δx
=

dy

dx
,  

δx → 0

 
δu

δx
=

du

dx
 

δx → 0

 
δv

δx
=

dv

dx
 

δx → 0

δu = 0More formerly lim lim lim and lim

∴ 
dy

dx
= u 

δx → 0

 
δv

δx
+ v 

δx → 0

 
δu

δx
+

δx → 0

 
δv

δx
  

δx → 0

δulim lim lim lim

∴ 
dy

dx
= u

dv

dx
+ v

du

dx
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46.3 Product Rule: Worked Examples

46.3.1  Example:

1 Differentiate  and find the stationary points.y = 2x (x − 1)4

Solution:

u = 2x   v = (x − 1)4

du

dx
= 2      

dv

dx
= 4 (x − 1)3

dy

dx
= u

dv

dx
+ v

du

dx

∴ 
dy

dx
= 2x × 4 (x − 1)3 + (x − 1)4 × 2

  = 8x (x − 1)3 + 2 (x − 1)4

  = 2 (x − 1)3 [4x + (x − 1)]
  = 2 (x − 1)3 (5x − 1)

Stationary points when 
dy

dx
= 0

2 (x − 1)3 (5x − 1) = 0

x = 1 and  x =
1

5

2 Differentiate y = x2 (x2 + 7)2

Solution:

u = x
2   v = (x2 + 7)2

du

dx
= 2x      

dv

dx
= 2 (x2 + 7) × 2x ⇒ 4x (x2 + 7)  (chain rule)

∴ 
dy

dx
= x

2 × 4x (x2 + 7) + (x2 + 7)2
× 2x

  = 4x
3 (x2 + 7) + 2x (x2 + 7)2

  = 2x (x2 + 7) [2x
2 + (x2 + 7)]

  = 2x (x2 + 7) (3x
2 + 7)

3 Differentiate y = xex

Solution:

u = x   v = e
x

du

dx
= 1      

dv

dx
= e

x

∴ 
dy

dx
= x × e

x + e
x × 1

  = e
x (x + 1)
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46 • C3 •  Differentiation: Product Rule

4 Differentiate y = (x2 + 4) (x5 + 7)4

Solution:

u = (x2 + 4)   v = (x5 + 7)4

du

dx
= 2x      

dv

dx
= 4 (x5 + 7)3

× 5x
4 ⇒ 20x

4 (x5 + 7)3

∴ 
dy

dx
= (x2 + 4) × 20x

4 (x5 + 7)3
+ (x5 + 7)4

× 2x

  = 20x
4 (x5 + 7)3 (x2 + 4) + 2x (x5 + 7)4

  = 2x (x5 + 7)3 [10x
3 (x2 + 4) + (x5 + 7)]

  = 2x (x5 + 7)3 (11x
5 + 40x

3 + 7)

5 Differentiate y = (x + 4) (x2 − 1)
1
2

Solution:

u = (x + 4)   v = (x2 − 1)
1
2

du

dx
= 1      

dv

dx
=

1

2
(x2 − 1)−1

2 × 2x ⇒ x (x2 − 1)−1
2

∴ 
dy

dx
= (x + 4) × x (x2 − 1)−1

2 + (x2 − 1)
1
2 × 1

  = x (x + 4) (x2 − 1)−1
2 + (x2 − 1)

1
2

  = (x2 − 1)−1
2 [x(x + 4) + (x2 − 1)1]

  = (x2 − 1)−1
2 (2x

2 + 4x − 1)

  =
(2x2 + 4x − 1)

(x2 − 1)
1
2

=
2x2 + 4x − 1

x2 − 1

6 Differentiate y = x4 sin x

Solution:

u = x
4   v = sin x

du

dx
= 4x

3  
dv

dx
= cos x

dy

dx
= u

dv

dx
+ v

du

dx

∴ 
dy

dx
= x

4 × cos x + sin x × 4x
3

  = x
4
cos x + 4x

3
sin x

  = x
3 (x cos x + 4 sin x)
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7 Differentiate   y = cos x  sin x

Solution:

   u = cos x   v = sin x

du

dx
= −sin x     

dv

dx
= cos x

dy

dx
= u

dv

dx
+ v

du

dx

∴ 
dy

dx
= cos x × cos x + sin x × (−sin x)

  = cos
2 x − sin

2 x

  = cos 2x

8 Differentiate  y = a ebx  sin ax

Solution:

   u = a ebx   v = sin ax

du

dx
= ab ebx     

dv

dx
= a cos ax

dy

dx
= u

dv

dx
+ v

du

dx

∴ 
dy

dx
= a ebx × a cos ax + sin ax × ab ebx

  = a
2 ebx cos ax + ab ebx sin ax

  = a ebx (a cos ax + b sin ax)

46.4 Topical Tips

Leave answers in factorised form. It is then easier to find the stationary points on a curve.
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47 • C3 • Differentiation: Quotient Rule

47.1 Differentiation: Quotient Rule

Assume y to be a function of x such that . Then consider y to be a quotient of two functions u and v,
which themselves are also functions of x. We now have:

y = f (x)

y =
u

v
 where u and v are functions of x

In this situation, where y is a quotient of two functions we use the Quotient Rule, thus:

        
dy

dx
=  

vdu
dx

− udv
dx

v2  

        (u

v )
'

=
vu′ − uv′

v2

Alternative forms of the equation as given in the exam formulae book:

       
d

dx ( f (x)
g (x)) =  

f ′ (x) g (x) − f (x) g′ (x)
[g (x)]2

47.2 Quotient Rule Derivation

Starting with  and the product rule we have:y =
u

v

      y =
u

v

      u = yv

   
du

dx
= y

dv

dx
+ v

dy

dx

   v
dy

dx
=

du

dx
− y

dv

dx

   v
dy

dx
=

du

dx
−

u

v

dv

dx

   
dy

dx
=

1

v
 

du

dx
−

u

v

dv

dx


        =
1

v
 

v

v

du

dx
−

u

v

dv

dx


       =
1

v2
 v

du

dx
− u

dv

dx


    
dy

dx
=  

vdu
dx

− udv
dx

v2  
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47.3 Quotient Rule: Worked Examples

47.3.1  Example:

1 Differentiate y =
x

x + 1

Solution:

  u = x   v = x + 1    
dy

dx
=  

vdu
dx − udv

dx

v2
Recall:

du

dx
= 1     

dv

dx
= 1

∴ 
dy

dx
=

(x + 1) × 1 − x × 1

(x + 1)2

  =
x + 1 − x

(x + 1)2

  =
1

(x + 1)2

2 Differentiate y =
x + 2

x2 + 3

Solution:

   u = x + 2   v = x
2 + 3

du

dx
= 1        

dv

dx
= 2x

∴ 
dy

dx
=

(x2 + 3) × 1 − (x + 2) × 2x

(x2 + 3)2

  =
(x2 + 3) − 2x (x + 2)

(x2 + 3)2

  =
x2 + 3 − 2x2 − 4x

(x2 + 3)2

  =
3 − x2 − 4x

(x2 + 3)2

3 Differentiate y =
3x

e4x

Solution:

   u = 3x   v = e
4x

du

dx
= 3         

dv

dx
= 4 e4x

∴ 
dy

dx
=

e4x × 3 − 3x × 4 e4x

(e4x)2

  =
3e4x − 12x e4x

(e4x)2  ⇒
3e4x (1 − 4x)

(e4x)2

  =
3 (1 − 4x)

e4x

418 ALevelNotesv8Erm 07-Apr-2013



47 • C3 •  Differentiation: Quotient Rule

4
Differentiate y =

x + 1

x2 + 1

Solution:

y =
(x + 1)

1
2

(x2 + 1)
1
2

   u = (x + 1)
1
2      v = (x2 + 1)

1
2

du

dx
=

1

2
(x + 1)−1

2    
dv

dx
=

1

2
(x2 + 1)−1

2 × 2x ⇒ x (x2 + 1)−1
2

dy

dx
=  

vdu
dx − udv

dx

v2

∴ 
dy

dx
=

(x2 + 1)
1
2 × 1

2 (x + 1)−1
2 − (x + 1)

1
2 × x (x2 + 1)−1

2

[(x2 + 1)
1
2]2

  =
1
2 (x2 + 1)

1
2 (x + 1)−1

2 − x (x + 1)
1
2 (x2 + 1)−1

2

(x2 + 1)

  =
1
2 (x + 1)−1

2 (x2 + 1)−1
2 [(x2 + 1) − 2x (x + 1)]

(x2 + 1)

  =
(x2 + 1) − 2x2 − 2x

2 (x2 + 1)
1
2 (x + 1)

1
2 (x2 + 1)

  =
1 − 2x − x2

2 (x2 + 1)
3
2 (x + 1)

1
2

5 Differentiate  and find the gradient at y =
ln x

x + 1
x = e

Solution:

  u = ln x     v = x + 1    
dy

dx
=  

vdu
dx − udv

dx

v2
Recall:

du

dx
=

1

x
     

dv

dx
= 1

∴ 
dy

dx
=

(x + 1) × 1
x − ln  x × 1

(x + 1)2

  =
x + 1 − x ln x

x (x + 1)2

  =
e + 1 − e

e (e + 1)2

  =
1

e (e + 1)2
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47.4 Topical Tips

Some quotients can be simplified such that the product or the chain rule can be used which are probably easier to
handle.

E.g. y =
5

(3x + 2)2
⇒ 5 (3x + 2)−2     ⇒  

dy

dx
= −30 (3x + 2)−3  chain rule

y =
1 − x

1 + x
⇒ (1 − x) (1 + x)−1  ⇒  

dy

dx
=

−2

(1 + x)2
     product rule

 

Note how the quotient rule is given in the formulae book:

y =
f (x)
g (x)

    
dy

dx
=  

f ′ (x) g (x) − f (x) g′ (x)
[g (x)]2

 

Compare with our derivation:

 
dy

dx
=  

vdu
dx − udv

dx

v2
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48 • C3 • Differentiation:

Exponential Functions

48.1 Differentiation of ex

Recall from Exponential & Log Functions that the value of e is chosen such that the gradient function of 
is the same as the original function and that when  the gradient of  is 1. 

y = ex

x = 0 y = ex

Hence:

y = e
x  

dy

dx
= e

x

y = e
kx  

dy

dx
= ke

kx

y = e
f (x)  

dy

dx
= f ′ (x) e

f (x)

48.1.1  Example:

1 Differentiate y = 5e3x + 2e−4x

Solution:

 
dy

dx
= 5 × 3e

3x + 2 × (−4) e
−4x

∴    
dy

dx
= 15e

3x − 8e
−4x

2 Differentiate  and find the equation of the tangent at y = 1
3e9x x = 0

Solution:

 
dy

dx
=

1

3
× 9e

9x = 3e
9x

∴    x = 0,  
dy

dx
= 3When 

 y =
1

3
e

0 =
1

3
and

y = mx + cNow equation of a straight line is 

∴  y = 3x +
1

3
Equation of the tangent is
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3 Differentiate y = ex3

Solution:

u = x
3    

du

dx
= 3x

2

y = e
u    

dy

du
= e

u

 
dy

dx
=

du

dx
×

dy

du

 
dy

dx
= 3x

2 × e
u = 3x

2 eu

∴    
dy

dx
= 3x

2 ex3

4 Differentiate y = e (x − 1)2

Solution:

t = x − 1  
dt

dx
= 1

u = (t)2     
du

dt
=  2t

y = e
u        

dy

du
= e

u

 
dy

dx
=

dy

du
×

du

dt
×

dt

dx

 
dy

dx
= e

u × 2t × 1 = 2t eu

∴    
dy

dx
= 2 (x − 1)  e (x − 1)2

5
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49 • C3 • Differentiation: Log Functions

49.1 Differentiation of ln x

Recall that  is the reciprocal function of  and that  is a reflection of  in the line ln x ex y = ex y = ln x y = x

    y = ln x   
dy

dx
=

1

x

    y = ln f (x)     
dy

dx
=

f ′ (x)
f (x)

  y = ln kx ⇒     y = ln k + lnx   Note that if:

∴   
dy

dx
= 0 +

1

x
=

1

x

This can be shown thus:

 
dy

dx
=

1
dx
dy

  (1)Recall that:

 y = ln x  x = e
yIf then

 
dx

dy
= e

yDifferntiate w.r.t to y

      
dx

dy
= xHence

        
dy

dx
=

1
dx
dy

=
1

x
From (1)

49.2 Worked Examples

49.2.1  Example:

1 Differentiate y = ln x2

Solution:

u = x
2       

du

dx
= 2x

y = ln u    
dy

du
=

1

u

 
dy

dx
=

dy

du
×

du

dx

 
dy

dx
= 2x ×

1

u
=

2x

u

∴    
dy

dx
=

2x

x2
=

2

x
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2 Differentiate y = ln (x2 2x3 + 3)
Solution:

 z = x
2 (2x

3 + 3)
1
2   z = uvLet and

 u = x
2    v = (2x

3 + 3)
1
2

Where and

∴ 
du

dx
= 2x        

dv

dx
=

1

2
(2x

3 + 3)−1
2 × 6x

2 ⇒  3x
2 (2x

3 + 3)−1
2

and

∴ 
dz

dx
= u

dv

dx
+ v

du

dx

  = x
2 × 3x

2 (2x
3 + 3)−1

2 + (2x
3 + 3)

1
2 × 2x

  = 3x
4 (2x

3 + 3)−1
2 + 2x (2x

3 + 3)
1
2

     
dy

dx
=

3x4 (2x3 + 3)−1
2 + 2x (2x3 + 3)

1
2

x2 (2x3 + 3)
1
2

=
3x4 (2x3 + 3)−1

2

x2 (2x3 + 3)
1
2

+
2x (2x3 + 3)

1
2

x2 (2x3 + 3)
1
2

but

  =
3x2

(2x3 + 3) +
2

x

3 Differentiate y = e
x ln 2

Solution:

u = x ln 2     
du

dx
=  ln 2

y = e
u    

dy

du
= e

u

 
dy

dx
=

dy

du
×

du

dx

 
dy

dx
= ln 2 × e

u = ln (2)  eu

∴    
dy

dx
= e

x ln 2 ln (2)  

4 Differentiate y = e
 (x − 1)2

Solution:

t = x − 1  
dt

dx
= 1

u = (t)2     
du

dt
=  2t

y = e
u        

dy

du
= e

u

 
dy

dx
=

dy

du
×

du

dt
×

dt

dx

 
dy

dx
= e

u × 2t × 1 = 2t eu

∴    
dy

dx
= 2 (x − 1)  e (x − 1)2
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50 • C3 • Differentiation: Rates of Change

50.1 Connected Rates of Change

Differentiation is all about rates of change. In other words, how much does y change with respect to x. Thinking
back to the definition of a straight line, the gradient of a line is given by the change in y co-ordinates divided by
the change in x co-ordinates. So it should come as no surprise that differentiation also gives the gradient of a
curve at any given point.

Perhaps the most obvious example of rates of change is that of changing distance with time which we call speed.
This can be taken further, and if the rate of change of speed with respect to time is measured we get acceleration.

In terms of differentiation this can be written as:

ds

dt
= v where s = distance, t = time & v = velocity

 
dv

dt
= a where s = distance, t = time & a = acceleration

dv

dt
=

d

dt
(v) =

d

dt
·
ds

dt
=

d2s

dt2

The gradient at A is the rate at which
distance is changing w.r.t time. i.e. speed.
A +ve slope means speed is increasing
and a −ve slope means it is decreasing.

s

t

A

B

Time

Dist

50.2 Rate of Change Problems

j One of the primary uses of differential calculus

j Rates of change generally relate to a change w.r.t time

j Rate of increase is +ve

j Rate of decrease is −ve

j Often problems involve two variables changing with time - hence the chain rule is required:

dy

dt
=

dy

du
×

du

dt

j This means that y is a function of u and u is a function of t

j When answering these problems, state:

j What has been given

j What is required

j Find the connection between variables

j Make sure units are compatible

j Recall these formulae:

j Volume of sphere 4
3πr3

j Surface area of sphere 4πr2

j Volume of a cone 1
3πr2h
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50.2.1  Example:

1 An objects speed varies according to the equation  and  increases at a constant rate of

3 radians / sec. Find the rate at which y is changing when  

y = 4sin 2θ θ

θ =
15π
18

Given: ; y = 4 sin 2θ dθ
dt

= 3

Required:  when 
dy
dt

θ = 15π
18

Connection:  
dy
dt

= dθ
dt

× dy
dθ

   
dy

dθ
= 8 cos 2θ

∴     
dy

dt
= 3 × 8 cos 2θ = 24 cos 2θ

θ =
15π
18

  
dy

dt
= 24 cos (2 ×

15π
18 ) = 24 ×

1

2
=  12 units /  secWhen 

2
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50 • C3 •  Differentiation: Rates of Change

3 A  spherical balloon (specially designed for exams) is being inflated. When the diameter is 10 cm,
its volume is increasing at 200 cm3 / sec. What rate is the surface area increasing.

Given: Volume of sphere:  ;V = 4
3πr3 dV

dt
= 200

Surface area of sphere: A = 4πr2

Required:  when dA
dt

r = 5

Connection:  dA
dt

= dV
dt

× dA
dV

To find  will require a connection between Volume and Area which is the radius. dA
dV

Using the chain rule to connect all the variables: dA
dV

= dr
dV

× dA
dr

Extending the first chain connection we get:

    
dA

dt
=

dV

dt
×

dr

dV
×

dA

dr
       

    
dV

dr
= 4πr

2

∴       
dr

dV
=

1

4πr2

    
dA

dr
= 8πr

    
dA

dt
= 200 ×

1

4πr2
× 8πr

    
dA

dt
=

400

r

r = 5        
dA

dt
=

400

5
= 80 cm

2 /  secWhen  

4 The same balloon has its volume increased by 4 m3/ sec. Find the rate at which the radius changes
when  cm.r = 4

Given: Volume of sphere:  ;V =
4

3
πr

3 dV

dt
= 4

Required:   when        
dr

dt
r = 4

Connection:    
dr

dt
=

dV

dt
×

dr

dV

    
dV

dr
= 4πr

2 ∴ 
dr

dV
=

1

4πr2

    
dr

dt
=

dV

dt
×

dr

dV
        

    
dr

dt
= 4 ×

1

4πr2
=

1

πr2

r = 4        
dr

dt
=

1

16π
 cm /  secWhen  
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5 A prism, with a regular triangular base has length 2h and each side of the triangle measures  cm.

If h is increasing at 2 m/sec what is the rate of increase in the volume when ?

2h

3
h = 9

Given: Volume of prism:  ;V = 1
2bhl dh

dt
= 2

Required:  when  dV
dt

h = 9

Connection:  dV
dt

= dV
dh

× dh
dt

2h/Ú3

2h

 V =  
1

2
×

2h

3
× h × 2h =

2h3

3
 ∴ 

dV

dh
=

6h2

3
Volume of prism:

    
dV

dt
=

6h2

3
× 2 =

12h2

3

h = 9 
dV

dt
=

12 × 9 2

3
= 561·2 (4 sf )When 
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50 • C3 •  Differentiation: Rates of Change

6 A conical vessel with a semi vertical angle of 30° is collecting fluid at the rate of 2 cm3/ sec. At
what rate is the fluid rising when the depth of the fluid is 6 cm, and what rate is the surface area of
the fluid increasing?

Given: Volume of cone:  ;V = 1
3πr2h

dV

dt
= 2

Radius of fluid:   r = h tan 30 =
h

3

Required, part 1:   when 
dh

dt
h = 6

Connection, part 1:  
dh

dt
=

dh

dV
×

dV

dt

 Volume of cone in terms of h: V = 1
3π ( h

3)2 h = 1
9πh3

    
dV

dh
=

3

9
πh

2 =
πh2

3

    
dh

dt
=

dh

dV
×

dV

dt

    
dh

dt
=

3

πh2
× 2

h = 6 
dh

dt
=

6

π36
=

1

6π
 cm / sec When : 

Required, part 2:   when 
dA

dt
h = 6

Connection, part 2:  
dA

dt
=

dA

dh
×

dh

dt

A = πr
2 = π ( h

3)
2

=
πh2

3
Area of fluid surface: 

     
dA

dh
=

2πh

3

∴       
dA

dt
=

2πh

3
×

6

πh2
=

4

h

h = 6      
dA

dt
=

4

6
=

2

3
= 0·333 cm

2 /  secWhen : 

429



My A Level Maths Notes

7

430 ALevelNotesv8Erm 07-Apr-2013



51 • C3 • Integration:

Exponential Functions

51.1 Integrating ex

Recall that:

d

dx
e

x = e
x

and since integration is the reverse of differentiation, (i.e. integrate the RHS) we derive:

∫ e
x
dx = e

x + C

Similarly:

   
d

dx
ae

x = ae
x                 

d

dx
e

(ax + b) = ae
(ax + b)and

      ∫ ae
x
dx = ae

x + C    ∫ e
(ax + b)

dx =
1

a
e

(ax + b) + Cand

Note: to integrate an exponential with a different base that is not e, then the base must be converted to base e. 
A good reason to use base e at all times for calculus!

51.2 Integrating 1/x

If you try to use the standard method of integration on a reciprocal function you end up in a mess, such as:

∫
1

x
dx = ∫ x

−1
dx =

1

−1 + 1
x

−1 + 1 + C =
1

0
x

0 + C  ? ? ? ? ? ?

Now recall the work on differentiating ln x:

d

dx
ln x =

1

x
  x > 0valid for

and review the graphs for  :ln x 1
xand 

x

y

y = ln(−x)

(−1, 0)
x

y

y = ln(x)

(1, 0)

1

e

y = x −1

x

y

Graphs of  1/x , ln(�x) & ln x
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Since  is only valid for positive values of x (see graph above) and taking the reverse of the differential of ,
(i.e. integrate the RHS) and provided  we derive:

ln x ln x
x > 0

d

dx
ln x =

1

x
 ⇔  ⌠

⌡
1

x
 dx = ln x + C  x > 0valid for 

However, from the graph of  we can see that solutions exist for negative values of x, so it must be
possible to integrate  for all values of x except for . The problem is dealing with .

y = x−1

y = 1
x x = 0 x < 0

From the graph, we can see that  is defined for negative values of x and so using the chain rule it can be
shown that:

ln (−x)

d

dx
ln kx =

1

x
  where k is a constant

k = −1  
d

dx
ln (−x) =

−1

−x
=

1

x
          If then

Hence:

d

dx
ln (−x) =

1

x
 ⇔  ⌠

⌡
1

x
 dx = ln (−x) + C  x < 0valid for 

Combining these two results using modulus notation we have:

⌠
⌡

1

x
 dx = ln | x | + C   x ≠ 0provided

With the restriction of , you cannot find the area under a curve with limits that span x ≠ 0 x ≠ 0.

51.3 Integrating other Reciprocal Functions

Similar arguments can be made for reciprocals of the form .1
ax + b

Recall that:

d

dx
ln (ax + b) =

a

ax + b
 ∴ ⌠

⌡
1

ax + b
 dx =

1

a
ln | ax + b | + C
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52 • C3 • Integration: By Inspection

52.1 Integration by Inspection

Recall that integration is the reverse of differentiation such that:

d

dx
f (x) = f ′ (x)   ⇔   ∫ f ′ (x) dx = f (x) + C

This reversal of the process leads to a number of standard integrals (many of which can be found in the
appendix).

Recognising and using standard integrals is often called

52.2 Integration of (ax+b)n  by Inspection

Recall that using the chain rule:

d

dx
(ax + b)n = an (ax + b)n − 1

and since integration is the reverse of differentiation, (i.e. integrate the RHS) we can derive the following
standard integral:

∫ (ax + b)n =
1

a (n + 1)
(ax + b)n + 1 + C  n ≠ −1

52.2.1  Example:

1 y = (2x − 1)6   
dy

dx
= 12 (2x − 1)5

If then 

∴   ∫ (2x − 1)5  dx =
1

12
(2x − 1)6 + C

∴  ∫ (ax + b)n
dx =

1

a (n + 1)
(ax + b)n + 1 + CFormula:

2 Find the integral of 2 − 7x

Solution:

∫ 2 − 7xdx = ∫ (2 − 7x)
1
2 dx =

1

−7 × 3
2

(2 − 7x)
3
2 + C

      = −
1
21
2

(2 − 7x)
3
2 + C

      = −
2

21
(2 − 7x)

3
2 + C
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3 Find the area between the curve  and the x axis:y = 16 − (2x + 1)4

 The curve crosses the x-axis at 2 points when: 
    

1.00.50.0-0.5-1.0-1.5-2.0

-20

-15

-10

-5

0

5

10

15

20

16 − (2x + 1)4 = 0

∴ (2x + 1)4 = 16 ⇒ (2x + 1) = ±2

∴ x = 1
2    x = −3

2or

= ∫
1
2

−3
2

 16 − (2x + 1)4  dx =

16x −

(2x + 1)5

10




  12

−3
2

Area 

 

    =  


16

2
−

(1 + 1)5

10


 −


−

16 × 3

2
−

(−3 + 1)5

10




    =  

8 −

(2)5

10


 −


−24 −

(−2)5

10




    =  8 −
32

10
 − −24 −

(−32)
10



    = 4.8 − (−20.8) = 25.6

52.3 Integration of (ax+b)−1 by Inspection

The standard integral also applies to  for all values of n, except , which is a special case.(ax + b)n n = 1

∫ (ax + b)−n
dx =

1

a (−n + 1)
(ax + b)−n + 1 + C  n = 1Not valid for  

The standard integral for  is:(ax + b)−1

∫ (ax + b)−1
dx =

1

a
 ln (ax + b) + C

52.3.1  Example:

1 Find the integral of 
1

(3x − 5)

∫ (3x − 5)−1  dx =
1

3
ln (3x − 5) + C

2 Find the integral of 
1

(3x − 5)3

∫ (3x − 5)−3  dx =
1

3 × (−2)
(3x − 5)−2 + C

   = −
1

6
(3x − 5)−2 + C

   = −
1

6 (3x − 5)2
+ C
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53 • C3 • Integration: Linear Substitutions
See also the C4 topic on Substitution.    Integration by Substitution

53.1 Integration by Substitution Intro

Although integrating something like  could be solved by laboriously multiplying out the
brackets and terms, an easier way is to use substitution, which is the integrals version of the chain rule.

∫ 3x (2x − 1)3  dx

Sometimes this is known as changing the variable.

We let u equal an expression in the integral and change all instances of x to u, (since we cannot integrate mixed
variables).

∫ (ax + b)n
dx = ∫ u

n
dx = ∫ u

n 
dx

du
 du

Substitution method as follows:

j Choose the expression to be substituted and make equal to u

j Differentiate to find  and hence du
dx

dx
du

j Substitute the new variable into the original integral

j Integrate w.r.t u

j Write the answer in terms of x.

53.2 Integration of (ax+b)n  by Substitution

Although these types can be done by inspection, substitution can also be used if required.

53.2.1  Example:

1 ∫ (2x − 1)5  dx

u = 2x − 1  
du

dx
= 2  

dx

du
=

1

2
Let 

∴ ∫ (2x − 1)5  dx = ∫ (u)5  
dx

du
 du = ∫ u

5 
1

2
 du

    =
1

2 × 6
 u6 + C

    =
1

12
 (2x − 1)6 + C

2 Find the integral of 2 − 7x

∫ 2 − 7x dx = ∫ (2 − 7x)
1
2  dx

u = 2 − 7x  
du

dx
= −7  

dx

du
= −

1

7
Let 

∴ ∫ (2 − 7x)
1
2  dx = ∫ (u)

1
2   

dx

du
 du = ∫ (u)

1
2 (−1

7)  du

    = (−1

7
×

2

3)  (u)
3
2 + C

    = −
2

21
(2 − 7x)

3
2 + C
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3 Find the integral of 
1

(3x − 5)3

Solution:

u = 3x − 5  
du

dx
= 3  

dx

du
=

1

3
Let 

∴ ∫ (3x − 5)−3
dx = ∫ (u)−3  

dx

du
 du = ∫ (u)−3 (1

3) du

      =
1

3 (−1

2) (u)−2
du

      = −
1

6 (3x − 5)2
+ C

4 Find the area between the curve  and the x axis:y = 16 − (2x + 1)4

    The curve crosses the x-axis at 2 points when:
 
   

1.00.50.0-0.5-1.0-1.5-2.0

-20

-15

-10

-5

0

5

10

15

20

16 − (2x + 1)4 = 0

∴ (2x + 1)4 = 16 ⇒ (2x + 1) = ±2

∴ x = 1
2    x = −3

2or

A = ∫
1
2

−3
2

 16 − (2x + 1)4  dxArea 

u = 2x + 1  
du

dx
= 2  

dx

du
=

1

2
Let 

Change the limits to be in terms of u:

x =
1

2
,  u = 2   x = −

3

2
,  u = −2 

A = ∫
2

−2
16 − (u)4  

dx

du
 du

A =
1

2 ∫
2

−2
16 − (u)4

du

  =
1

2


16u −

(u)5

5




 2

−2
 

  =

8u −

(u)5

10




 2

−2

  =

16 −

(2)5

10


 −


−16 −

(−2)5

10




  = 12.8 − (−12.8) = 25.6
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53.3 Integration Worked Examples

53.3.1  Example:

1 ∫ 4x (6x + 5)4  dx

Solution:

    u = 6x + 5  
du

dx
= 6  

dx

du
=

1

6
Let 

∴ x =
u − 5

6

∴ ∫ 4x (6x + 5)4  dx = ∫ 4x (u)4  
dx

du
 du = ∫ 4x (u)4  

1

6
 du

          =
4

6
⌠
⌡ x u4 du

          =
2

3
⌠
⌡ (u − 5

6 ) u
4 du

          =
2

18
⌠
⌡

(u − 5) u
4 du

          =
1

9
⌠
⌡

(u5 − 5u
4)  du

          =
1

9




u6

6
−

5u5

5





+ C

          =
1

9



u6

6
− u

5 + C

          =
1

9



u6

6
−

6

6
u

5 + C

          =
1

54
[u

6 − 6u
5] + C

          =
1

54
u

5 [u − 6] + C

          =
1

54
(6x + 5)5 [6x + 5 − 6] + C

          =
1

54
(6x + 5)5 (6x − 1) + C

2 ∫ x 2 − x2  dx = ∫ x (2 − x
2 )

1
2

dx

u = 2 − x
2   

du

dx
= −2x  

dx

du
= −

1

2x
Let 

 ∫ x (2 − x
2 )

1
2

dx = ∫ x (u)
1
2   

dx

du
 du = ∫ x (u)

1
2 (− 1

2x) du

    = −
1

2 ∫ (u)
1
2 du

    = (−1

2
×

2

3)  (u)
3
2 + C

    = −
1

3
(2 − x

2 )
3
2 + C
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3 ∫ (x + 1) (3x − 4)4  dx

Solution:

    u = 3x − 4  
du

dx
= 3  

dx

du
=

1

3
Let 

∴ x =
u + 4

3
 ⇒  x + 1 =

u + 4

3
+ 1 ⇒  x + 1 =

u + 7

3

∫ (x + 1) (3x − 4)4  dx =
⌠
⌡ (u + 7

3 ) (u)4  
dx

du
 du =

⌠
⌡ (u + 7

3 ) (u)4  
1

3
 du

          =
1

9
⌠
⌡ (u + 7) u

4 du

          =
1

9
⌠
⌡

(u5 + 7u
4) du

          =
1

9




u6

6
−

7u5

5





+ C

          =
1

9




5u6

30
−

42u5

30





+ C

          =
1

270
u

5 (u − 42) + C

          =
1

270
(3x − 4)5 (3x − 4 − 42) + C

          =
1

270
(3x − 4)5 (3x − 46) + C

4
Find the integral of  using  as the substitution.

1

x (3 + x )
u = x

Solution:

    u = x = x
1
2  

du

dx
=

1

2
x

−1
2  

dx

du
= 2 x = 2uLet 

∫
1

x (3 + x )  dx =
⌠
⌡ ( 1

u(3 + u ) )  
dx

du
 du =

⌠
⌡ ( 1

u(3 + u ) ) 2u du

      = ⌠
⌡

2u

u(3 + u )  du = 2 ⌠
⌡

1

3 + u
 du

      = 2 ln (3 + u) + C

      = 2 ln (3 + x ) + C
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5 ∫ (6x + 3) (6x − 3)5  dx

Solution:

    u = 6x − 3  
du

dx
= 6  

dx

du
=

1

6
Let 

∴ x =
u + 3

6
 ⇒  6x + 3 = 6 (u + 3

6 ) + 3 ⇒  6x + 3 = u + 6

∫ (6x + 3) (6x − 3)5  dx =
⌠
⌡

(u + 6) (u)5  
dx

du
 du =

⌠
⌡

(u + 6) (u)5 1

6
 du

          =
1

6
⌠
⌡

(u + 6) (u)5  du

          =
1

6
⌠
⌡

(u6 + 6u
5) du

          =
1

6




u7

7
+

6u6

6





+ C

          =
u6

6




u

7
+ 1





+ C

          =
u6

42
[u + 7] + C

          =
1

42
(6x − 3)6 (6x − 3 + 7) + C

          =
1

42
(6x − 3)6 (6x + 4) + C

          =
2

42
(3x + 2)(6x − 3)6 + C

          =
1

21
(3x + 2)(6x − 3)6 + C
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6
Find the integral of

ex

(2ex + 3)
Solution:

    u = 2e
x + 3  

du

dx
= 2e

x  
dx

du
=

1

2ex
Let 

e
x =

u − 3

2
 ⇒  2e

x = u − 3 ∴ 
dx

du
=

1

u − 3

∫
ex

(2ex + 3 )  dx =
⌠
⌡ (u − 3

2 ) ×
1

u
 
dx

du
 du =

⌠
⌡ (u − 3

2 ) 1

u ( 1

u − 3)   du

      = ⌠
⌡

1

2u
 du

      =
1

2
 ln (u) + C

      = 2 ln (2e
x + 3) + C

7 Find the integral of  between 
1

6x + 3
x = 0 & x = 1

Solution:

    u = 6x + 3  
du

dx
= 6  

dx

du
=

1

6
Let 

∫
1

0

1

6x + 3
dx = ∫

x = 1

x = 0

1

u

dx

du
 du = ∫

x = 1

x = 0

1

6u
 du

      =
1

6 ∫
x = 1

x = 0

1

u
 du

      =
1

6
 [ln (u)]x = 1

x = 0

      =
1

6
[ ln (6x + 3)]x = 1

x = 0

      =
1

6
(ln (6 + 3) − ln (0 + 3))

      =
1

6
(ln (9) − ln (3))

      =
1

6 (ln 
9

3) =
1

6
 ln 3

Alternatively - change the limits to be in terms of u:

x = 1 ⇒  u = 9

x = 0 ⇒  u = 3

    =
1

6 ∫
9

3

1

u
 du

      =
1

6
 [ln (u)]9

3

      =
1

6
(ln (9) − ln (3))

      =
1

6
 ln 3
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8 ∫ 4x (x2 − 5)4
 dx

Solution:

u = x
2 − 5  

du

dx
= 2x  

dx

du
=

1

2x
Let 

∴ ∫ 4x (x2 − 5)4
 dx = ∫ 4x (u)4  

dx

du
 du = ∫ 4x (u)4  

1

2x
 du

         = ∫ 2 (u)4
du

         =
2

5
 (u)5 + C

         =
2

5
 (x2 − 5)5 + C
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53.4 Derivation of Substitution Method

The argument goes something like this:

Given that:

x = g (u)  & f (x) = f [g (u)]

 y = ∫ f (x) dx           (1)and

     
dy

dx
= f (x)         (2)Differentiating both sides of (1):

      
dy

du
=

dy

dx
×

dx

du
From the chain rule:

            
dy

du
= f (x) ×

dx

du
From (2)

     y = ⌠
⌡ f (x)

dx

du
 duIntegrating both sides w.r.t u:

 f (x) = f [g (u)]    ∴      y = ⌠
⌡ f [g (u)]

dx

du
 duBut

     ∫ f (x) dx =
⌠
⌡

f [g (u)]
dx

du
 duFrom (1)

Note that in integrating  w.r.t. x,  is replaced by   and the rest of the integral is expressed in terms of

u.

f (x) dx dx
du

 du
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54 • C3 • Integration:

Volume of Revolution

54.1 Intro to the Solid of Revolution

Integration gives us a convenient method for finding the area under a curve. Now consider the effect of rotating
that area through  radians about the x-axis. This will produce a ‘solid of revolution’, as the example below
illustrates. It then becomes possible to calculate the volume of this solid shape.

2π

Solid of Revolution

54.2 Volume of Revolution about the x-axis

In a similar method to that of finding the area under a curve, we will put the solid shape though a bacon slicer,
and produce a very large number of very thin slices. By assuming that each slice is a perfect cylinder of
thickness  the volume of each slice can be found. Summing all these slices together will give us the volume of
the solid, or the ‘Volume of Revolution’.

δx

 For the rotation of a curve  about the y-axis we have:y = f (x)

Volume of Revolution

Recall that the volume of a cylinder is , where r is the radius and d is the depth of the cylinder. πr2d

The volume of a thin slice, , is given by:δV

δV ≈ πy
2δx

443



My A Level Maths Notes

Hence, the total volume of revolution about the x-axis is approximated by adding these slices together:

V ≈ ∑ δV ≈ ∑
n

i = 1

πy
2δx

Accuracy improves as  becomes ever smaller and tends towards zero, hence the volume is the limit of the sum
of all the slices as .

δx
δx → 0

V = lim
δx → 0

∑
n

i = 1

πy
2δx 

y = f (x)  Since we can write:

V = lim
δx → 0

∑
n

i = 1

π [f (x)]2 δx

x = a x = b So the volume between the points and is given by:

∴ V = ∫
 b

a

π [f (x)]2
dx ≡ ∫

 b

a

πy
2
dx

Note that since integration is done w.r.t x, then the limits are for .x = a,  & x = b

54.3 Volume of Revolution about the y-axis

A similar argument can be made for the rotation of a curve  about the y-axis.x = g (y)

The volume of a slice is given by:

   δV ≈ πx
2δy

Hence total volume of revolution about the y-axis is approximated by:

   V ≈ ∑ δV ≈ ∑
n

i = 1

πx
2δy

Hence:

   V = lim
δy → 0

∑
n

i = 1

πx
2δy

   V = lim
δy → 0

∑
n

i = 1

π [f (y)]2 δy

 ∴     V = ∫
 b

a

π [f (y)]2
dy

Note that since integration is done w.r.t y, then the limits are for .y = a,  & y = b
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54 • C3 •  Integration: Volume of Revolution

54.4 Volume of Revolution Worked Examples

54.4.1  Example:

1

-1

1

p

y = sin x

2p

y

Find the volume of the solid generated by rotating the area under the curve of  when
rotated through  radians about the x-axis, and between the y-axis and the line . 

y = sin x
2π x = π

Solution:

   V = ∫
 b

a

πy
2
dx

∴      V = ∫
 π

0
π sin

2
x dx

 2 sin
2
x = 1 − cos 2xNow: 

∴    V =
π
2 ∫

 π

0
 1 − cos 2x  dx

   =
π
2

 x −
1

2
sin 2x

π

0

   =
π
2

 (π − 0) −
1

2
(0 − 0)

   =
π2

2
 units

3
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2

x

y

y2 = x

y = x

x

y

Find the volume of the solid generated by rotating the area between the curve
 through  radians, about the x-axis.y2 = x and the line y = x 2π

Solution:
In general, the solid of rotation of similar shapes is the difference between the solids of rotation of
the two separate curves or lines. 

Note that the limits are found from the intersection of the straight line and the curve. The
intersection points are easy found to be (0, 0) and (1, 1).

   V = ∫
 b

a

π (y1
2 − y2

2) dx

In this case:  and y1
2 = x y2 = x

∴    V = ∫
1

0
π (x − x

2) dx

   = π ∫
1

0

(x − x
2) dx

   = π



1

2
x

2 −
1

3
x

3



1

0

   = π



1

2
−

1

3





   = π



3

6
−

2

6





=
1

6
π  units

3
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54 • C3 •  Integration: Volume of Revolution

3

x

y

y = (4x − 1)5

0.5

The shaded region is rotated about the x-axis, find the volume of the solid.

Solution:
The limits of the shaded region are found when  and  (given)y = 0 x = 0·5

 y = 0 (4x − 1)5 = 0    When then 

 4x − 1 = 0

          4x = 1

     x = 0·25

To find the volume:

     V = ∫
 b

a

πy
2
dx

∴  V = ∫
0·5

0·25
π [(4x − 1)5]2

dx

 u = 4x − 1  
du

dx
= 4,   ∴    dx =

du

4
let and 

 x = 0·5   u = 4 × 0·5 − 1 = 1Changing the limits:

   x = 0·25 u = 4 × 0·25 − 1 = 0

∴    V = ∫
1

0
π (u5)2 du

4

   =
π
4 ∫

1

0
 u10 du

   =
π
4

 
1

11
u

11

1

0

   =
π
44

[ u11]1

0

   =
π
44

[ 1 − 0]

   =
π
44

 units
3
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4

x

y

y = 4e−x

1.0

R

The shaded region R enclosed by the curve   is rotated about the x-axis. Find the volume
of the solid when the curve is bounded by the lines .

y = 4e−x

x = 0,  x = 1 y = 0and 

Solution:
To find the volume:

      V = ∫
 b

a

πy
2
dx

∴  V = ∫
1

0
π [4e

−x]2
dx

  = ∫
1

0
16π e−2x

dx

  = 16π ∫
1

0
e

−2x
dx

  = 16π 


−

1

2
e

−2x



1

0

  =
16

2
π [(−e

−2) −  (−1)]

  = 8π [(−e
−2) + 1]

  = 8π (1 − e
−2)

54.5 Volume of Revolution Digest

Volume of Revolution about the x-axis:

     V = ∫
 b

a

πy
2
dx = ∫

 b

a

π [f (x)]2
dx

     V = π ∫
 b

a

y
2
dx    

Note that since integration is done w.r.t x, then the limits are for .x = a,  & x = b

Volume of Revolution about the y-axis:

     V = ∫
 b

a

πx
2
dy = ∫

 b

a

π [f (y)]2
dy

     V = π ∫
 b

a

x
2
dy    

Note that since integration is done w.r.t y, then the limits are for .y = a,  & y = b
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Module C4
Core 4 Basic Info

Algebra and graphs; Differentiation and integration; Differential equations; Vectors.

The C4 exam is 1 hour 30 minutes long and is in two sections, and worth 72 marks (75 AQA).

(That’s about a minute per mark allowing some time for over run and checking at the end)

Section A (36 marks) 5 – 7 short questions worth at most 8 marks each. 

Section B (36 marks) 2 questions worth about 18 marks each.

OCR Grade Boundaries.
These vary from exam to exam, but in general, for C4, the approximate raw mark boundaries are:

Grade 100% A ∗ A B C

Raw marks 72 62 ± 3 55 ± 3 48 ± 3 41 ± 3

UMS % 100% 90% 80% 70% 60%

The raw marks are converted to a unified marking scheme and the UMS boundary figures are the same for all exams.
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C4 Brief Syllabus

1 Algebra and Graphs 

j divide a polynomial, (degree ≤ 4), by a linear or quadratic polynomial, & give quotient & any remainder 

j express rational functions as partial fractions, and carry out decomposition, where the denominator is no more
complicated than  or , and not top heavy.(ax + b) (cx + d) (ex + f ) (ax + b) (cx + d)2

j use the expansion of  where n is a rational number and x <1 (finding a general term is not included, but
adapting the standard series to expand, e.g.  is included)

(1 + x)n

(2 − ½x)−1

j understand the use of a pair of parametric equations to define a curve, and use a given parametric representation
of a curve in simple cases

j convert the equation of a curve between parametric and Cartesian forms.

2 Differentiation and Integration

j use the derivatives of  together with sums, differences and constant multiplessin x, cos x, tan x

j find and use the first derivative of a function which is defined parametrically or implicitly

j extend the idea of ‘reverse differentiation’ to include the integration of trig functions (e.g. )sin x, sec2 2x

j use trig identities (e.g. double angle formulae) in the integration of functions such as cos2 x

j integrate rational functions by decomposition into partial fractions 

j recognise an integrand of the form , and integrate, for example 
kƒ′(x)
ƒ(x)

x
x2 + 1

j recognise when an integrand can be regarded as a product, and use integration by parts to integrate, for example,
 (understand the relationship between integration by parts and differentiation of a product)x sin 2x, x2e2, ln x

j use a given substitution to simplify and evaluate either a definite or an indefinite integral 

(understand the relationship between integration by substitution and the chain rule).

3 First Order Differential Equations 

j derive a differential equation from a simple statement involving rates of change (with a constant of
proportionality if required)

j find by integration a general form of solution for a differential equation in which the variables are separable

j use an initial condition to find a particular solution of a differential equation

j interpret the solution of a differential equation in the context of a problem being modelled by the equation.

4 Vectors 

j use of standard notations for vectors

j carry out addition and subtraction of vectors and multiplication of a vector by a scalar, and interpret these
operations in geometrical terms

j use unit vectors, position vectors and displacement vectors

j calculate the magnitude of a vector, and identify the magnitude of a displacement vector  as being the distance
between the points A and B

AB
→

j calculate the scalar product of two vectors (in either two or three dimensions), and use the scalar product to
determine the angle between two directions and to solve problems concerning perpendicularity of vectors

j understand the significance of all the symbols used when the equation of a straight line is expressed in the form
r = a + tb

j determine whether two lines are parallel, intersect or are skew 

j find the angle between two lines, and the point of intersection of two lines when it exists.
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 Module C4

C4 Assumed Basic Knowledge

Knowledge of C1, C2 and C3 is assumed, and you may be asked to demonstrate this knowledge in C4. 

You should know the following formulae, (which are NOT included in the Formulae Book).

1 Differentiation and Integration

Function  f (x) Dif f erential dy
dx = f ′ (x)

sin kx     k cos kx

cos kx − k sin kx

tan kx      k sec2 kx

Function  f (x) Integral ∫ f (x) dx

sin kx − 1
k

 cos kx + c

cos kx   1
k

 sin kx + c

tan kx            1
k

 ln | sec kx | + c

x in radians!

∫ ƒ′ (g (x)) g′ (x)  dx = ƒ (g (x)) + c

2 Vectors

    | xi + yj + zk | = x2 + y2 + z2

    (ai + bj + ck) • (xi + yj + zk) = ax + by + cz

    p • q = | p | | q | cos θ

    p • q = ( ) • ( ) = ax + by + cz = ( a2 + b2 + c2) ( x2 + y2 + z2) cos θ
a

b

c

x

y

z

    r = a + tp

3 Trig

     sin 2A = 2 sin A cos A

     cos 2A = cos
2 A − sin

2 A

       = 1 − 2 sin
2 A

       = 2 cos
2 A − 1

     tan 2A ≡
2 tan A

1 − tan2 A
     

     a sin x ± b cos x ≡ R sin (x ± α)

     a cos x ± b sin x ≡ R cos (x ∓ α)  (watch the signs)

     R = a2 + b2 R cos α = a R sin α = b

     tan α =
b

a
  0 < a <

π
2

453



My A Level Maths Notes

454 ALevelNotesv8Erm 07-Apr-2013



56 • C4 • Differentiating Trig Functions

56.1 Defining other Trig Functions

This depends on 3 ideas:

j Definitions of &  in terms of  & tan x, cot x,  sec x cosec x sin x cos x

j The differential of   & sin x cos x

j Product and Quotient rules of differentiation.

From previous module: (Note the coloured letters in bold - an easy way to remember them).

sec x ≡
1

cos x
 cosec x ≡

1

sin x
 cot x ≡

1

tan x

    

Function  f (x) Dif f erential  dy
dx

= f ′ (x)

sin x cos x

cos x −sin x

true for x in radians

Product and Quotient rules:

   y = uv        
dy

dx
= v

du

dx
+ u

dv

dx
Product rule: if then

   y =
u

v
        

dy

dx
=

vdu
dx − udv

dx

v2
Quotient rule: if then

       
dy

dx
=

dy

du
×

du

dx
Chain rule: 

We can use these results to find the differentials of the other trig functions:

1 tan x

     y = tan x

     y =
sin x
cos x

⇒
u

v

 y =
u

v
        

dy

dx
=

vdu
dx − udv

dx

v2
   Quotient rule:  if then

     
dy

dx
=

cos x × cos x − sin x × −sin x
cos2x

      =
cos2x + sin2x

cos2x
=

1

cos2x
= sec

2
x

2 sec x

     y = sec x =
1

cos x
= (cos x)−1

     u = cos x  
du

dx
= −sin x

     y = u
−1  

dy

du
= − u−2 

     
dy

dx
=

du

dx
×

dy

du

     
dy

dx
= −sin x × (− u−2) =

sin x
cos2x

= tan x sec x 
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3 cosec x

    y = cosec x =
1

sin x
= (sin x)−1

    u = sin x  
du

dx
= cos x

    y = u
−1  

dy

du
= − u−2 

   
dy

dx
=

du

dx
×

dy

du
use the Chain rule:

    
dy

dx
= cos x × (−u

−2)  

    
dy

dx
= − 

cos x
sin 2x

= − 
1

tan x sin x
= − cot x cosec x

or use the Quotient rule:

    u = 1  
du

dx
= 0

    v = sin x  
dv

dx
= cos x

    
dy

dx
=

sin x × 0 − 1 × cos x
sin 2x

=
− cos x
sin2 x

= − cot x cosec x

4 cot x

    y = cot x =
1

tan x
= (tan x)−1

    u = tan x  
du

dx
= sec x

    v = u
−1  

dv

dx
= − u−2 =  −

sec x
tan2x

    
dy

dx
=

−1 − tan x
tan2x

=
−1

tan2x
×

− tan x
tan2x

    
dy

dx
= − cot

2
x − 1 = − cosec

2
x

Summary so far:

Function  f (x) Dif f erential dy
dx

= f ′ (x)

sin x     cos x

cos x − sin x

tan x     sec2x

cot x − cosec x

cosec x − cosec x cot x

sec x     sec x tan x

Function  f (x) Dif f erential  dy
dx

= f ′ (x)

sin kx     k cos kx

cos kx − k sin kx

tan kx     k sec2 kx
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56 • C4 •  Differentiating Trig Functions

56.2 Worked Trig Examples

56.2.1  Example: Differentiate the following:

1 y = x
3
sin x              [product rule]

u = x
3    v = sin x

du

dx
= 3x

2   
dv

dx
= cos x

dy

dx
= x

3 × cos x + sin x × 3x
2

dy

dx
= x

2 (x cos x + 3 sin x)

2 y =
1

x
 cos x ⇒  

cos x
x

           [quotient rule]

 u = cos x   v = xLet:

du

dx
= − sin x   

dv

dx
= 1

dy

dx
=

x × (− sin x) − cos x
x2

dy

dx
=

− x sin x − cos x
x2

= − 
x sin x + cos x

x2

3 y = cos
4
x              [chain rule]

u = cos x     y = u
4

du

dx
= − sin x   

dy

du
= 4u

3 

dy

dx
=

dy

du
×

du

dx

dy

dx
= 4u

3 × (− sin x)

dy

dx
= 4 cos

3
x (− sin x) = − 4 cos

3
x sin x

4 y = cos
4
x           [quick method - diff out - diff in]

y = (cos x)4

dy

dx
= 4 (cos x)3 × (−sin x)  [differentiate outside bracket - differentiate inside bracket]

dy

dx
= − 4 cos

3
x sin x

5 y = ln sec x             [chain rule]

u = sec x    y = ln u

du

dx
= sec x tan x  

dy

du
=

1

u

dy

dx
= sec x tan x ×

1

sec x
= tan x
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6 y = sin (3x −
π
4 )             [chain rule]

u = 3x −
π
4

   y = sin u

du

dx
= 3    

dy

du
= cos u

dy

dx
=

dy

du
×

du

dx

dy

dx
= cos (u) × 3

dy

dx
= 3cos (3x −

π
4 )

7

543210-1-2-3-4-5
0

2

4

6

8

10

12

14

16

18

20

22

24

y=sin 3x2

y = sin23x

u = 3x    y = sin2u

v = sin u

∴ y = v2

du

dx
= 3  

dy

dv
= 2v  

dv

du
=  cos u     [extended chain rule]

dy

dx
=

dy

dv
×

du

dx
×

dv

du

dy

dx
=  2v × 3 × cos u

dy

dx
=  2sin u × 3 × cos u

dy

dx
= 6cos 3x × sin 3x

dy

dx
= 3sin 6x     double angle formula
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8 Alternative approach to above problem

y = sin
23x = (sin 3x)2           [chain rule]

u = sin 3x     y = u
2

du

dx
= 3 cos 3x  

dy

du
= 2u

dy

dx
=

dy

du
×

du

dx

dy

dx
= 2u × 3 cos 3x

dy

dx
= 6 sin 3x . cos 3x

dy

dx
= 3 sin 6x          [double angle formula]

9 y = sin
5
x cos

3
x

u = sin
5
x  v = cos

3
x

 u        vUse chain rule on Use chain rule on

If  z = sin x         If  w = cos x

u = z
5           v = w

3

du

dz
= 5z

4 
dz

dx
= cos x          

dv

dw
= 3w

2 
dw

dx
= − sin x

du

dx
=

du

dz
×

dz

dx
        

dv

dx
=

dv

dw
×

dw

dx

du

dx
= 5z

4 × cos x           
dv

dx
= 3w

2 × (− sin x)

du

dx
= 5 sin

4
x cos x           

dv

dx
= − 3 cos

2
x sin x

Use product rule:

dy

dx
= v

du

dx
+ u

dv

dx

dy

dx
= cos

3 x × 5 sin
4
x × cos x − sin

5
x × 3 cos

2
x × sin x

dy

dx
= 5 cos

4 x × sin
4
x − 3 sin

6
x × cos

2
x

dy

dx
= sin

4
x cos

2 x (5 cos
2
x − 3 sin

2
x)
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10 y = ln sin x             [chain rule]

 = ln (sin x)
1
2

 =
1

2
ln (sin x)                  [log laws]

  u = sin x Let

∴ y =
1

2
ln u

dy

du
=

1

2
 ×  

1

u
  

du

dx
=  cos x

dy

dx
=

1

2
 ×  

1

u
× cos x =

cos x
2sin x

11 y = 4x
6
sin x             [product rule]

  u = 4x
6 v = sin xLet

∴ 
du

dx
=  24x

5    
dv

dx
= cos x

dy

dx
= v

du

dx
+ u

dv

dx

dy

dx
= sin x ×  24x

5 + 4x
6 ×  cos x

dy

dx
= 4x

5 (6 sin x + x cos x)

12 y = tan
3
x − 3tan x            [chain rule]

  = (tan x)3 − 3tan x

  u = tan x ∴ 
du

dx
=  sec

2
xLet

y = u
3 − 3u

dy

du
= 3u

2 − 3

dy

dx
=

dy

du
×

du

dx

dy

dx
= (3u

2 − 3) ×  sec
2
x

dy

dx
= (3tan

2
x − 3) ×  sec

2
x

dy

dx
= 3sec

2
x (tan

2
x − 1)
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13 y =
cos 3x

e3x
             [quotient rule]

  u = cos 3x v = e
3xLet

∴ 
du

dx
=  − 3sin 3x    

dv

dx
= 3e

3x

dy

dx
=

vdu
dx − udv

dx

v2

dy

dx
=

e3x (−3 sin 3x) − cos 3x × 3e3x

(e3x)2

 =
−3 sin 3x − cos 3x 

(e3x)

 = − 
3 (sin 3x + cos 3x)  

e3x

14 y = cosec 3x          [quick method - diff out - diff in]

y = cosec (3x)

dy

dx
= − cosec (3x) cot (3x) × 3 [differentiate outside bracket - differentiate inside bracket]

dy

dx
= −3 cosec3x cot 3x

15 y = cot
23x           [quick method - diff out - diff in]

y = (cot (3x))2

dy

dx
= 2 (cot (3x))1 × (− cosec

2 3x) × 3

     [differentiate outside bracket - differentiate inside bracket − used twice]

dy

dx
= − 6cot 3x cosec

2 3x

16 Find the smallest value of  for which the curve  has a gradient of 0.5θ y = 2θ − 3sin θ

y = 2θ − 3sin θ

dy

dθ
= 2 − 3 cos θ

dy

dθ
= 0·5  ⇒  2 − 3 cos θ = 0·5When 

∴ cos θ = 0·5

∴ θ =
π
3

smallest +ve value of 

Note: the answer is given in radians, differentiation and integration are valid only if angles are
measured in radians.

461



My A Level Maths Notes

17 y =
sin4 3x

6x
           [quotient rule & chain rule]

y =
(sin (3x))4

6x

    z = sin (3x)  
dz

dx
=  3 cos (3x)Let

   u = (z)4     v = 6x

∴   
du

dz
=  4 z3  

dv

dx
= 6

      
dz

dx
=  3 cos (3x)

      
du

dx
=

dz

dx
×

du

dz
= 3 cos (3x) × 4 z3 = 12 cos (3x)  sin

3 (3x)

dy

dx
=

vdu
dx − udv

dx

v2

dy

dx
=

6x [12 cos (3x)  sin3 (3x)] − sin4 (3x) × 6

(6x)2

dy

dx
=

6x [4 (sin (3x))3 × 3 cos (3x)] − sin4 (3x) × 6

(6x)2

      [or differentiate outside bracket - differentiate inside bracket]

 =
72x sin3 (3x)  cos (3x) − 6 sin4 (3x)

36x2

 =
sin3 (3x) [12 cos (3x) −  sin (3x)]

6x2

18 y = sin
2
x cos 3x

Need product rule and chain rule:

y = (sin x)2 × cos (3x)

dy

dx
= sin

2
x × −3sin (3x) + cos 3x ×  2 (sin x)  cos x

dy

dx
= sin x [2 cos 3x cos x − 3sin x sin 3x]
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56.3 Differentiation of Log Functions

These can be used to find the integrals by reversing the process.

1 y = ln | sin x |               [chain rule]

  u = sin x ∴ 
du

dx
=  cos xLet

  y = ln |u|       ∴ 
dy

du
=

1

u

dy

dx
=

dy

du
×

du

dx

dy

dx
=

1

u
× cos x

OR

  y = ln | f (x)| ⇒
dy

dx
=

1

f (x)
× f ′ (x)If

dy

dx
=

1

sin x
×

d

dx
(sin x)

dy

dx
=

1

sin x
× cos x

dy

dx
= cot x

2 y = ln | sec x |               [chain rule]

dy

dx
=

1

sec x
×

d

dx
(sec x)

dy

dx
=

1

sec x
× sec x tan x

dy

dx
= tan x

3 y = ln | sec x + tan x |             [chain rule]

dy

dx
=

1

sec x + tan x
×

d

dx
(sec x + tan x)

dy

dx
=

1

sec x + tan x
× sec x tan x + sec

2
x

dy

dx
=

1

sec x + tan x
× sec x (tan x + sec x)

dy

dx
= sec x
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4 y = − ln | cosec x + cot x |            [chain rule]

dy

dx
= − 

1

cosec x + cot x
×

d

dx
(cosec x + cot x)

dy

dx
= − 

1

cosec x + cot x
× (− cosec x cot x − cosec

2
x

dy

dx
= − 

1

cosec x + cot x
× (− cosec x (cot x + cosec x)

dy

dx
= − 

− cosec x (cot x + cosec x)
cosec x + cot x

dy

dx
=  cosec x
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57.1 Intro

Integrating trig functions is mainly a matter of recognising the standard derivative and reversing it to find the
standard integral. You need a very good working knowledge of the trig identities and be able to use the chain
rule. Although this chapter has been divided up into a number of smaller sections to aid recognition of the
different types of integral, most of the methods used are similar to each other.

57.2 Integrals of sin x, cos x and sec2 x

From the standard derivative of the basic trig functions, the integral can be found by reversing the process. Thus:

    
d

dx
(sin x) = cos x ⇒  ∫ cos x dx = sin x + c

    
d

dx
(cos x) = −sin x ⇒  ∫ sin x dx = −cos x + c

    
d

dx
(tan x) = sec

2 x ⇒  ∫ sec
2 x dx = tan x + c

Only valid for x in radians

57.3 Using Reverse Differentiation:

In a similar manner the following can be found:

      

Function  y = f (x) Integral ∫ f (x) dx

sin x − cos x + c ∗ ∗

cos x    sin x + c ∗ ∗

sin kx − 1
k

cos kx + ∗ ∗

cos kx    1
k

sin kx + ∗ ∗

sec2 kx     1
k

tan kx + c ∗

sec x tan x     sec x + c

cosec x cot x − cosec x + c

cosec2x − cot x + c

cot x     ln | sin x |

Valid for x in radians

E.g.

∫ cosec 2x cot 2x dx = −
1

2
cosec 2x + c
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57.3.2  Example:

1 ∫ tan (2x − π)  dx

  =
1

2
ln | sec (2x − π)| + c

2 ∫ tan
2
x dx

 1 + tan
2
x = sec

2
x use Avoids use of ln in the answer …

∴ ∫ (sec
2
x − 1)  dx = tan x − x + c

3 Find the area under the curve
 from  to the

first point at which the graph cuts the
positive x-axis.

y = sin (2x + 1
3π) x = 0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p/3 5p/6

To find limits of function:

sin (2x +
1

3
π) = 0Axis is cut when: 

∴ 2x +
1

3
π = 0,  π,  etc

     2x = − 
π
3

 ,  
2π
3

,  etc

∴  x = − 
π
6

  (which can be ignored as it is outside the range required)

 x =
2π
6

 =  
π
3

or 

 ∫
π
3

0
sin (2x +

π
3 ) dx = − 

1

2
cos (2x +

π
3 )0

π
3

       = − 
1

2
cos (2π

3
 +

π
3 ) − − 

1

2
cos (π

3 )   [cos π = −1]

       = (1

2) − (− 
1

4) =
3

4
      [cos π / 3 = 1

2]
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57.4 Integrals of tan x and cot x

To find the integrals recognise the standard integral type:

    ⌠
⌡

k f ′ (x)
f (x)

 dx = k ln |  f (x)  | + c

  ∫ tan xDerive 

    tan x =
sin x
cos x

    ∫ tan x = ∫
sin x
cos x

 dx

          = − ∫
−sin x
cos x

 dx

          = − ln | cos x | + c

          = ln |(cos x)−1| + c

          = ln | 1

cos x
 | + c

          = ln | sec x | + c

    ∫ tan x = − ln | cos x | + c = ln | sec x | + c

∫ tan x dx = − ln | cos x | + c = ln | sec x | + c

For the general case:

∫ tan ax dx =
1

a
ln | sec ax | + c

This is often asked for in the exam.

Similarly it can be shown that:

       ∫ cot x = ∫
cos x
sin x

 dx

              = ln | sin x | + c

∫ cot ax dx =  
1

a
ln | sin x | + c

NB the modulus sign means you can’t take the natural log of a negative number.
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57.5 Recognising the Opposite of the Chain Rule

Reversing the derivatives (found using the chain rule), the following can be derived:

 
d

dx
sin (ax + b) = a cos (ax + b)   ⇒  ∫ cos (ax + b)  dx =

1

a
 sin (ax + b)  + c

 
d

dx
cos (ax + b) = − a sin (ax + b)      ⇒  ∫ sin (ax + b)  dx = − 

1

a
 cos (ax + b)  + c

 
d

dx
tan (ax + b) = a sec

2 (ax + b)  ⇒  ∫ sec
2 (ax + b)  dx =

1

a
 tan (ax + b)  + c

57.5.1  Example:

1
∫

π
4

0
sec

2 (2x −
π
4 ) = 1Show that 

Solution:

  ∫
π
4

0
sec

2 (2x −
π
4 ) = 

1

2
 tan (2x −

π
4 )

π
4

0

      =
1

2
 tan (2π

4
−

π
4 ) −

1

2
 tan (0 −

π
4 )

      =
1

2
tan (π

4 ) −  tan (−π
4 )

      =
1

2
[1 + 1] = 1

2
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57.6 Integrating with Trig Identities

This covers many of the sub topics in this chapter.You really, really need to know these, the most useful of
which are:

Pythag:

    cos
2
A + sin

2
A ≡ 1

    1 + tan
2
A ≡ sec

2
A

Double angle

    cos 2A ≡ 2 cos
2
A − 1  ∴  cos

2
A ≡ 1

2 (1 + cos 2A)

    cos 2A ≡ 1 − 2 sin
2
A  ∴   sin

2
A ≡ 1

2 (1 − cos 2A)

    sin 2A ≡ 2 sin A cos A

Addition or compound angle formulae

    sin (A + B) ≡ sin A cos B + cos A sin B

    sin (A − B) ≡ sin A cos B − cos A sin B

    cos (A + B) ≡ cos A cos B − sin A sin B

    cos (A − B) ≡ cos A cos B + sin A sin B ∗ ∗ ∗ ∗

From the Addition or compound angle formulae

    2 sin A cos B ≡ sin (A − B) + sin (A + B)

    2 cos A cos B ≡ cos (A − B) + cos (A + B)

    2 sin A sin B ≡ cos (A − B) − cos (A + B)

    2 sin A cos A ≡ sin 2A

  ∴  sin A cos B ≡ 1
2 (sin (A − B) + sin (A + B))

  ∴  cos A cos B ≡ 1
2 (cos (A − B) + cos (A + B))

  ∴  sin A sin B ≡ 1
2 (cos (A − B) − cos (A + B))

  ∴  sin A cos A ≡ 1
2 sin 2A

Factor formulae

    sin A + sin B = 2 sin (A + B

2 )  cos (A − B

2 )
    sin A − sin B = 2 cos (A + B

2 )  sin (A − B

2 )
    cos A + cos B = 2 cos (A + B

2 )  cos (A − B

2 )
    cos A − cos B = −2 sin (A + B

2 )  sin (A − B

2 ) ∗ ∗ ∗ ∗
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57.6.1  Example:

1 ∫ cos
2 3x dx

   cos
2
A ≡ 1

2 (1 + cos 2A)           [Double angle]

   ∫ cos
2 3x dx = 1

2 ∫ (1 + cos 6x) dx

            = 1
2 (x + 1

6sin 6x) + c

2 ∫ sin 3x cos 3x dx

   2 sin A cos B ≡ sin (A − B) + sin (A + B)      [Compound angle]

  ∫ sin 3x cos 3x dx = 1
2 ∫ sin (3x − 3x) + sin (3x + 3x) dx

      = 1
2 ∫ sin (6x) dx

      =
1

2 (− 
1

6
cos 6x) + c

      = − 
1

12
cos 6x + c

3 ∫
4π

0
sin

2 (1
2x)  dx

    ∫
4π

0
sin

2 (1
2x)  dx = 1

2 ∫
4π

0
(1 − cos 2x

2 ) dx   [Double angle]

      = 1
2 [x − sin x ] 4π

0

      = 1
2 [(4π − sin 4π) − (0 −  sin 0)]

      = 1
2 (4π − 0)

      = 2π

4
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57.7 Integrals of Type: cos A cos B, sin A cos B & sin A sin B

This type of problem covers the most common questions. Use the addition (compound angle) trig identities.

57.7.1  Example:

1 Integrate sin 3x cos 4x

2 sin A cos B ≡ sin (A − B) + sin (A + B)Use formula: 

 A = 3x, B = 4xLet:

∴  2 sin 3x cos 4x = sin (3x − 4x) + sin (3x + 4x)

     =  sin (−x) + sin 7x

∴       sin 3x cos 4x =  1
2 (sin (−x) + sin 7x)

∫ sin 3x cos 4x dx = ∫ 1
2 (sin (−x) + sin 7x)  dx 

    = 1
2 (cos x − 1

7cos 7x) + c

    =
1

2
cos x −

1

14
cos 7x + c

2 Integrate sin 4x cos 4x

 sin A cos A ≡ 1
2 (sin (2A)Use formula: 

 A = 4xLet:

∫ sin 4x cos 4x = 1
2 ∫ sin 8x dx

     =
1

2
− 

1

8
 cos 8x + c = − 

1

16
 cos 8x
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57.8 Integrating EVEN powers of sin x & cos x

For this we need to adapt the double angle cosine identities:

      cos 2A ≡ 2cos
2
A − 1

      cos 2A ≡ 1 − 2sin
2
A

   ∴        cos
2
A ≡ 1

2 (1 + cos 2A)

   ∴        sin
2
A ≡ 1

2 (1 − cos 2A)

This technique can be used for any even power of sin x or cos x, and also  etc.sin2 (ax + b)

57.8.1  Example:

1  ∫ sin
2
x dxFind:

 sin
2
A = 1

2 (1 − cos 2A)Recognise:

∴  ∫ sin
2
x dx = 1

2

⌠
⌡

(1 − cos 2x) dx

    = 1
2 (x − 1

2sin 2x) + c

2  ∫ cos
2
x dxFind:

  cos
2
A = 1

2 (1 + cos 2A)Recognise:

  ∫ cos
2
x dx = 1

2 ∫ (1 + cos 2x)  dx

        = 1
2 (x + 1

2sin 2x) + c

3
∫

π
4

0
sin

2 2x dxFind:

sin
2
A = 1

2 (1 − cos 2A)  Let A = 2x,  ∴ sin
2 2x = 1

2 (1 − cos 4x)now

∴    ∫
π
4

0
sin

2 2x dx = 1
2 ∫

π
4

0
(1 − cos 4x)  dx

    =
1

2
x −

1

4
 sin 4x0

π
4

    =
1

2
(π

4
− sin 

4π
4 ) − (0 − 0)

    =
π
8
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4 ∫ cos
4
x dxFind:

     ∫ cos
4
x dx =

⌠
⌡ cos

2
x cos

2
x dx

   = ⌠
⌡

1

2
(1 + cos 2x) ×

1

2
(1 + cos 2x)  dx

   =
1

4
⌠
⌡ (1 + cos 2x) (1 + cos 2x)  dx

   =
1

4
⌠
⌡ (1 + 2cos 2x + cos

2 2x)  dx

   =
1

4
⌠
⌡ 1 + 2cos 2x +

1

2
(1 + cos 4x) dx

   =
1

4
⌠
⌡ (3

2
+ 2cos 2x +

1

2
cos 4x)  dx

   =
1

4

3

2
 x + sin 2x +

1

8
sin 4x + c

   =
3

8
x +

1

4
sin 2x +

1

32
sin 4x + c

5 ∫ sin
2 (2x + 3) dxFind:

 sin
2
A = 1

2 (1 − cos 2A)Recognise:

 ∫ sin
2 (2x + 3) dx = 1

2

⌠
⌡ (1 − cos 2 (2x + 3)) dx

       = 1
2

⌠⌡ (1 − cos (4x + 6)) dx

 ∫ cos (ax + b) dx =
1

a
 sin (ax + b) + cRecall:

 ∫ sin
2 (2x + 3) dx = 1

2
x −

1

4
cos (4x + 6) + c
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57.9 Integrals of Type: cosn A sin A, sinn A cos A

Another example of applying the reverse of the differentiation and the chain rule:

From the chain rule, the derivative required is

d

dx
(sin

n x) = n sin
n − 1

x cos x

In reverse

∫ sin
n x cos x dx =

1

n + 1
sin

n + 1 + c

Similarly:

∫ cos
n x sin x dx = −

1

n + 1
cos

n + 1 + c

57.9.1  Example:

1
⌠
⌡ sin

4
x cos x dx =

1

5
 sin

5
x + c

2
⌠
⌡ cos

7
x sin x dx = −

1

8
 cos

8
x + c

3 Three ways of integrating :sin x cos x

   ∫ sin x cos x dx =
1

2
sin

2
x + c         sin

n x cos x See  above

    = −
1

2
cos

2
x + c      cos nx sin x See  above

    = ∫
1

2
sin 2x dx    See addition formula

    = −
1

4
cos 2x + c
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57.10 Integrating ODD powers of sin x & cos x

This technique is entirely different - change all but one of the sin/cos functions to the opposite by using the
pythag identity:

cos
2
x + sin

2
x = 1

Hence:

sin
2
x = 1 − cos

2
x

cos
2
x = 1 − sin

2
x

57.10.1  Example:

1          ∫ sin
3
x dxFind:

 ∫ sin
3
x dx = ∫ sin x sin

2
x  dx

  ∫ sin x sin
2
x  dx = ∫ sin x (1 − cos

2
x) dx

    = ∫ (sin x − cos
2
x sin x)  dx

∫ cos
n
x sin x dx    Recognise standard type [from previous section]

    = − cos x +
1

3
cos

3
x + c

2          ∫ sin
5
x dxFind:

∫ (sin x sin
2
x sin

2
x)  dx = ∫  sin x (1 − cos

2
x) (1 − cos

2
x)  dx

     = ∫ sin x (1 − 2cos
2
x + cos

4
x) dx

     = ∫ (sin x − 2cos
2
x sin x + cos

4
x sin x)  dx

∫ cos
n
x sin x  dxRecognise standard type 

     = − cos x +
2

3
cos

3
x −

1

5
cos

5
x + c
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57.11 Integrals of Type: sec x, cosec x & cot x

From the standard derivative of these functions, the integral can be found by reversing the process. Thus:

  
d

dx
(sec x) = sec x tan x   ⇒  ∫ sec x tan x dx = sec x + c

  
d

dx
(cosec x) = − cosec x cot x     ⇒  ∫ cosec x cot x dx = − cosec x + c

  
d

dx
(cot x) = − cosec

2 x   ⇒  ∫ cosec
2 x dx = − cot x + c

57.11.1  Example:

1 ∫
cos 3x

sin2 3x

 ∫
cos 3x

sin2 3x
= ∫

1

sin 3x
×

cos 3x

sin 3x
 dxRewrite integral as:

    = ∫ cosec 3x cot 3x dx

    = −
1

3
cosec 3x + c

2 ∫ cot
2 x dx

 1 + cot
2 x = cosec

2 xRecognise identity:

  ∫ cot
2 x dx = ∫ (cosec

2 x − 1)  dx

         = − cot x − x + c
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57.12 Integrals of Type: secnx tan x, tannx sec2x

From the standard derivative of these functions, the integral can be found by reversing the process. Thus:

   
d

dx
(sec x) = sec x tan x ⇒  ∫ sec x tan x dx = sec x + c

  
d

dx
(sec

n x) = n sec
n − 1 x (sec

n
tan x)and

       = n sec
n
x tan x

 ⇒  ∫ sec
n
x tan x dx =

1

n
sec

n
x + cReversing the derivative gives

   
d

dx
(tan x) = sec

2
x ⇒  ∫ sec

2 x dx = tan x + c

  
d

dx
(tan

n + 1
x) = (n + 1)  tan

n
x sec

2
xand

 ⇒  ∫ tan
n
x sec

2
x dx =

1

n + 1
tan

n + 1
x + cReversing the derivative gives

57.12.1  Example:

1  ∫ tan
2
x sec

2
x dxFind:

    ∫ tan
2
x sec

2
x dx =

1

3
tan

3
x + c

2  ∫ tan
2
x dxFind:

    ∫ tan
2
x dx = ∫ (sec

2 − 1)  dx

   =  tan x − x + c

3  ∫ tan
3
x dxFind:

    ∫ tan
3
x dx = ∫ tan x tan

2
x dx

   = ∫ tan x (sec
2
x − 1)  dx

   = ∫ (tan x sec
2
x − tan x)  dx

   = 1
2tan

2
x + ln (cos x) + c

4 Alternatively

   ∫ tan
3
x dx = ∫ (tan x sec

2
x − tan x)  dx

   = 1
2sec

2
x + ln (cos x) + c
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57.13 Standard Trig Integrals (radians only)

  
d

dx
(sin x) = cos x    ⇒  ∫ cos x dx = sin x + c

  
d

dx
(cos x) = − sin x ⇒  ∫ sin x dx = − cos x + c

  
d

dx
(tan x) = sec

2 x   ⇒  ∫ sec
2 x dx = tan x + c

  
d

dx
(sec x) = sec x tan x      ⇒  ∫ sec x tan x dx = sec x + c

  
d

dx
(cosec x) = − cosec x cot x ⇒  ∫ cosec x cot x dx = − cosec x + c

  
d

dx
(cot x) = − cosec

2 x       ⇒  ∫ cosec
2 x dx = − cot x + c

  
d

dx
(sin (ax + b)) = cos (ax + b)    ⇒  ∫ cos (ax + b) dx =

1

a
 sin (ax + b) + c

  
d

dx
(cos (ax + b)) = − sin (ax + b) ⇒  ∫ sin (ax + b) dx = − 

1

a
 cos (ax + b) + c

  
d

dx
(tan (ax + b)) = sec

2 (ax + b)   ⇒  ∫ sec
2 (ax + b) dx =

1

a
 tan (ax + b) + c

  
d

dx
(sin f (x)) = f ′ (x) cos f (x)      ⇒  ∫ f ′ (x) cos f (x)  dx = sin  f (x)  + c

  
d

dx
(cos f (x)) = − f ′ (x) sin f (x)  ⇒  ∫ f ′ (x) sin f (x)  dx = − cos f (x)  + c

  
d

dx
(tan f (x)) = f ′ (x) sec

2 f (x)   ⇒  ∫ f ′ (x) sec
2 f (x)  dx = tan  f (x)  + c

  ∫ tan x dx = − ln | cos x | + c = ln | sec x | + c

  ∫ cot x dx = ∫
cos x
sin x

 dx =  ln | sin x | + c

  ∫ sec x dx =  ln | sec x + tan x | + c

  ∫ cosec x dx = − ln | cosec x + cot x | + c

  ∫ sin
n
x cos x dx =

1

n + 1
 sin

n + 1
x + c

  ∫ cos
n
x sin x dx = − 

1

n + 1
 cos

n + 1
x + c

  ∫ sec
n
x tan x dx =

1

n
 sec

n
x + c

  ∫ tan
n
x sec

2
x dx =

1

n + 1
 tan

n + 1
x + c
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OCR C4 / AQA C3

58.1 Intro to Integration by Inspection

This covers two forms of integration which involve a function combined with its differential, either as a product
or a quotient. These include:

j Integrals of the form ⌠⌡
k f ′(x)
f (x) dx

j Integrals of the form ⌠⌡ k f ′ (x) [ f (x)]n
dx

j Integrals of the form ⌠⌡ k f ′ (x) e f (x) dx

Integration of these types is often called ‘integration by inspection’ or ‘integration by recognition’, because once
proficient in using this method, you should be able to just write down the answer by ‘inspecting’ the function.

It is derived from reversing the ‘function of a function’ rule for differentiation, i.e. the chain rule.

The key to using this method is recognising that one part of the integrand is the differential (or scalar multiple)
of the other part.

There are several methods of integrating fractions and products, depending of the form of the original function,
and recognition of this form will save a good deal of calculations. A common alternative to this method is
‘integration by substitution’.

58.2 Method of Integration by Inspection

The basic method for any of these types is the same:

j Guess   — at a suitable integral by inspecting the function

j Test   — your guess by differentiating

j Reverse   — if , then , since differentiation & integration are

inverse processes

d
dx

(guess) = z ∫ z dx = (guess) + c

j Adapt    — compare your  with original question and adapt the answer accordingly. 

Note that any adjustment must be a number only, not a function of x.

(This step not required if  is the exact differential of )

∫ z dx

f ′ (x) f (x)

58.3 Integration by Inspection — Quotients

Integrals of the form  are basically fractions with a function in the denominator and a multiple of its

differential in the numerator, assuming the function is rational.

⌠
⌡

k f ′(x)
f (x) dx

E.g.
  

⌠

⌡

4x

x2 + 1
dx ⇒

 2x

2 × differential of the denominator

a function with a differential of

  
⌠

⌡

4 sin x
cos x + 1

dx ⇒
− 4 × differential of the denominator

a function with a differential of − sin x

From C3 work, using the chain rule, recall that:

                y = ln x      
dy

dx
=

1

x
If then

       y = ln f (x)   
dy

dx
=

1

f (x)
× f ′ (x)and if then
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Reversing the differential by integrating we get:

⌠
⌡

k f ′ (x)
f (x)

dx ⇒ k ln |  f (x)  | + c

Note that the modulus sign indicates that you cannot take the natural log of a negative number.

Following our method, our first guess should, therefore, be: .(guess) = ln | denominator |
Note that the numerator has to be an exact derivative of the denominator and not just a derivative of a function
inside the denominator. 

E.g. ⌠
⌡

x

x + 2
 dx ≠ ln | x + 2 | + c

In this case use substitution to evaluate the integral.

Recall the following standard integrals and differential:

        ⌠
⌡

1

x
 dx = ln | x | + c

    ⌠
⌡

1

ax + b
 dx =

1

a
 ln | ax + b | + c

    ⌠
⌡

k

ax + b
 dx =

k

a
 ln | ax + b | + c

      
d

dx
([ f (x)]n) = n f ′ (x) [ f (x)]n − 1

    [chain rule]

58.3.3  Example:

1 ⌠
⌡

x2

1 + x3
dx

     ln | 1 + x
3 |Guess:

  
d

dx

ln | 1 + x

3 | =
1

1 + x3
× 3x

2 =
3x2

1 + x3
Test:

 ⌠
⌡

3x2

1 + x3
dx = ln | 1 + x

3 | + cReverse:

    ⌠
⌡

x2

1 + x3
dx =

1

3
ln | 1 + x

3 | + cAdapt:

        Note: Adjustment has to be a number only.

2 ⌠
⌡

2ex

ex + 4
dx

     ln | ex + 4 |Guess:

  
d

dx

ln | ex + 4 | =

1

ex + 4
× e

x =
ex

ex + 4
Test:

 ⌠
⌡

ex

ex + 4
dx = ln  | ex + 4 | + cReverse:

   ⌠
⌡

2ex

ex + 4
dx = 2 ln  | ex + 4 | + cAdapt:

          = ln  (ex + 4)2
+ c   Squared term is +ve
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3 ⌠
⌡

cos x − sin x
sin x + cos x

 dx

     ln | sin x + cos x |Guess:

  
d

dx [ln | sin x + cos x |] =
1

sin x + cos x
× (cos x − sin x) =

cos x − sin x
sin x + cos x

Test:

 ⌠
⌡

cos x − sin x
sin x + cos x

 dx = ln | sin x + cos x | + cReverse:

Adapt: Not required because the numerator is the exact differential of the denominator. 

4 ⌠
⌡

2x

x2 + 9
dx

⌠
⌡

f ′ (x)
f (x)

dxOf the form

∴ ⌠
⌡

2x

x2 + 9
dx = ln | x2 + 9 | + c

       = ln (x2 + 9) + c

Note: for all real values of , hence modulus sign not required. x, (x2 + 9) > 0

5 ⌠⌡ tan x dx Often comes up in the exam!

tan x =
sin x
cos x

  
d

dx
(cos x) = −sin xThink and

     ln | cos  x |Guess:

  
d

dx

ln | cos  x |

=
1

cos x
× (− sin x) =

− sin x
cos x

Test:

 ⌠
⌡

− sin x
cos  x

dx = ln | cos x | + cReverse:

 ⌠
⌡

sin x
cos  x

dx = − ln | cos x | + cAdapt:  

 ∴    ⌠⌡ tan x dx = − ln | cos x | + c

       = ln | cos x |−1 + c

       = ln | 1

cos x
 | + c

       = ln | sec x | + c

6 ⌠⌡ cot 2x dx

cot 2x =
1

tan 2x
=  

cos 2x

sin 2x
  

d

dx
(sin 2x) =  2 cos 2xThink and

     ln | sin 2x |Guess:

  
d

dx


ln | sin 2x |


=

1

sin 2x
× (2 cos 2x) =

2 cos 2x

sin 2x
Test:

 ⌠
⌡

2 cos 2x

sin 2x
 dx = ln | sin 2x | + cReverse:

 ⌠
⌡

cos 2x

sin 2x
dx =

1

2
 ln | sin 2x | + cAdapt:  

        ⌠
⌡ cot 2x dx =

1

2
 ln | sin 2x | + c
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7 ⌠
⌡

x3

x4 + 9
dx

  ln | x4 + 9 |Guess:

     
d

dx
ln | x4 + 9 | =

1

x4 + 9
× 4x

3 =
4x3

x4 + 9
Test:

 ⌠
⌡

4x3

x4 + 9
 dx = ln | x4 + 9 | + cReverse:

   ⌠
⌡

x3

x4 + 9
 dx =

1

4
ln | x4 + 9 | + cAdapt:

           =
1

4
 ln (x4 + 9) + c   x term is +ve

58.4 Integration by Inspection — Products

Integrals of the form  and  involves a function raised to a power or e raised to

the power of the function, multiplied by a multiple of the differential of f(x). Note that many of these examples
can also be solved by other methods like substitution.

⌠⌡ k f ′ (x) (f (x))n dx ⌠⌡ k f ′ (x) ef (x) dx

E.g. ∫ x (x2 + 1)2
dx   f (x) = x

2 + 1 ⇒  f ′ (x) = 2x

∫ x
2 (3x

3 + 1)4
dx      f (x) = 3x

3 + 1      ⇒  f ′ (x) = 9x
2

∫ x ex2
     f (x) = x

2    ⇒  f ′ (x) = 2x

∫ 3x
4 ex5 + 6

dx     f (x) = x
5 + 6   ⇒  f ′ (x) = 5x

4

Some quotients have to be treated as a product:

∫
x

x2 + 1
 dx = ∫ x (x2 + 1)−1

2  dx    : f (x) = x
2 + 1 ⇒  f ′ (x) = 2x

From earlier work with the chain rule, recall that:

     y = 
 f (x)

n

   
dy

dx
= n f ′ (x) [ f (x)]n − 1

If then

     y = e
 f (x)   

dy

dx
= f ′ (x) e

 f (x)If then

Reversing the differentials by integrating we get:

⌠
⌡ f ′ (x) 

 f (x)
n

dx ⇒
1

n + 1

 f (x)

n + 1

+ c

⌠⌡ f ′ (x) e
 f (x) dx ⇒ e

 f (x) + c    

482 ALevelNotesv8Erm 07-Apr-2013



58 • C4 •  Integration by Inspection

58.4.2  Example:

1 ⌠
⌡ x (x2 + 1)2

dx

     (x2 + 1)2 + 1
⇒ (x2 + 1)3

Guess:

  
d

dx

(x2 + 1)3

 = 3 (x2 + 1)2
× 2x = 6 x (x2 + 1)2

Test:

 ⌠
⌡ 6 x (x2 + 1)2

dx = (x2 + 1)3
+ cReverse:

    ⌠
⌡ x (x2 + 1)2

dx =
1

6
(x2 + 1)3

+ cAdapt:

2 ⌠⌡ cos x sin
3
x dx ⇒ ⌠⌡ cos x (sin x)3

dx

     (sin x)4
Guess:

  
d

dx
[(sin x)4] = 4 (sin x)3 × cos x = 4 cos x (sin x)3

Test:

 ⌠⌡ 4 cos x (sin x)3
dx = (sin x)4 + cReverse:

    ⌠
⌡ cos x sin

3
x dx =

1

4
 sin

4
x + cAdapt:

3 ⌠
⌡ x

2 (x3 + 5) dx ⇒ ⌠
⌡ x

2 ( x3 + 5)
1
2

dx

     ( x3 + 5)
3
2

Guess:

  
d

dx


(x3 + 5)

3
2
 =

3

2
(x3 + 5)

1
2 × 3x

2 =
9

2
 x2 (x3 + 5)

1
2

Test:

 ⌠
⌡

9

2
 x2 (x3 + 5)

1
2

dx = ( x3 + 5)
3
2 + cReverse:

    ⌠
⌡ x

2 (x3 + 5)
1
2

dx =
2

9
( x3 + 5)

3
2 + cAdapt:

4 ⌠⌡ x ex2
dx

     ex2
Guess:

  
d

dx
[e

x2] = e
x2

× 2x = 2x ex2
Test:

 ⌠⌡ 2x ex2
dx = e

x2
+ cReverse:

    ⌠
⌡ x ex2

dx =
1

2
e

x2
+ cAdapt:

5 ⌠⌡ cos x esin x dx

     esin xGuess:

  
d

dx
[e

sin x] = e
sin x × cos x = cos x esin xTest:

 ⌠⌡ cos x esin x = e
sin x + cReverse:

Adapt: not required
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6 ⌠
⌡

x

(3x2 − 4)5
 dx ⇒ ⌠

⌡
x (3x

2 − 4)−5
dx

     (3x
2 − 4)−4

Guess:

  
d

dx
[(3x

2 − 4)−4] = − 4 × 6x (3x
2 − 4)−5

= −24x (3x
2 − 4)−5

Test:

 ⌠
⌡ −24x (3x

2 − 4)−5
dx = (3x

2 − 4)−4
+ cReverse:

    ⌠
⌡ x (3x

2 − 4)−5
dx = −

1

24
(3x

2 − 4)−4
+ cAdapt:

7 After a while it becomes easier to write the answer down, but always check the possible answer by
differentiating.

⌠
⌡ e

x (6e
x − 5)2

dx

          f (x) = 6e
x − 5 ⇒  f ′ (x) = 6e

xNote:

     ⌠
⌡ e

x (6e
x − 5)2

dx =
1

6
⌠
⌡ 6e

x (6e
x − 5)2

dxAdapt:

    
1

6
⌠
⌡ 6e

x (6e
x − 5)2

dx =
1

6
×

1

3
(6e

x − 5)3
Inspect:

        =
1

18
(6e

x − 5)3

  
d

dx



1

18
(6e

x − 5)3


=
1

18
× 6e

x × 3 (6e
x − 5)2

= e
x (6e

x − 5)2
Test:

58.5 Integration by Inspection Digest

d

dx [ln f (x)] =
1

f (x)
× ( f ′ (x))

⌠
⌡

k f ′ (x)
f (x)

dx = k ln | f (x)  | + c

⌠⌡ f ′ (x) cos f (x)  dx = sin f (x) + c

⌠
⌡ sin

n
x cos x dx =

1

n + 1
sin

n + 1 + c

       
d

dx
[( f (x))n] = n f ′ (x) [ f (x)]n − 1

⌠
⌡ f ′ (x) [ f (x)]n

dx ⇒
1

n + 1
[ f (x)]n + 1

+ c

d

dx
[e

 f (x) ] = f ′ (x) e
 f (x) 

∫ e
x dx = e

x + c

⌠⌡ f ′ (x) e
 f (x) dx ⇒ e

 f (x) + c
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59 • C4 • Integration by Parts
OCR C4 / AQA C3

This is the equivalent of the product rule for integration. It is usually used when the product we want to integrate
is not of the form  and so cannot be integrated with this standard method, or by recognition or by
substitution. 

f ′ (x) (f (x))n

Integrating by Parts is particularly useful for integrating the product of two types of function, such as a
polynomial with a trig, exponential or log function, (e.g. ). x sinx,  x2 ex,  ln x

59.1 Rearranging the Product rule:

The rule for Integrating by Parts comes from integrating the product rule.

      
d

dx
(uv) = u

dv

dx
+ v

du

dx
         Product rule:

 ⌠
⌡

d

dx
(uv)  dx = ⌠

⌡ u
dv

dx
 dx + ⌠

⌡ v
du

dx
 dxIntegrating w.r.t x to get:

         uv = ⌠
⌡ u

dv

dx
 dx + ⌠

⌡ v
du

dx
 d

      ⌠
⌡ u

dv

dx
 dx = uv − ⌠

⌡ v
du

dx
 dxRearranging:

⌠
⌡ u 

dv

dx
 dx = uv − ⌠

⌡ v 
du

dx
 dx

59.2 Choice of u & dv/dx

Care must be taken over the choice of . u and dv / dx

The aim is to ensure that it is simpler to integrate  than the original .  So we choose u to be easy to

differentiate and when differentiated to become simpler. Choose dv to be easy to integrate.

vdu
dx

udv
dx

Normally, u is assigned to any polynomial in x, and if any exponential function is involved, assign this to .

However, if  is involved make this u, as it is easier to differentiate the ln function than to integrate it. 

dv
dx

ln x

59.3 Method

j Let  the bit of the product which will differentiate to a constant, even if it takes 2 or 3 turns, such
as polynomials in x, (e.g.  differentiates to )

u =
x3 3x2 → 6x → 6

j If this is not possible or there is a difficult part to integrate let this be . e.g. .u ln x

j Differentiate to find .du
dx

j Let the other part of the product be , like  which is easy to integrate.dv
dx

eax

j Integrate to find v.

j Substitute into the rule and finish off.

j Add the constant of integration at the end.

j Sometimes integrating by parts needs to be applied more than once (see special examples). Do not
confuse the use of u in the second round of integration.

j This is the method used to integrate .ln x
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59.4 Evaluating the Definite Integral by Parts

Use this for substituting the limits:

∫
b

a

u
dv

dx
 dx = uv  

a

b

− ∫
b

a

v
du

dx
dx

59.5 Handling the Constant of Integration

The method listed above suggests adding the constant of integration at the end of the calculation. Why is this?

The best way to explain this is to show an example of adding a constant after each integration, and you can see
that the first one cancels out during the calculation.

Example : ∫ x sin x dxFind:  

Solution:

 u = x &  
dv

dx
= sin xLet:

    
du

dx
= 1         v = ⌠

⌡  
dv

dx
= − cos x + k

where k is the constant from the first integration and c is the constant from the second
integrations.

⌠
⌡ u 

dv

dx
 dx = uv − ⌠

⌡ v 
du

dx
 dxRecall:

   ∫ x cos x dx = x (− cos x + k) − ∫ (− cos x + k) × 1 dx

          = − x cos x + kx + ∫ cos x dx − ∫ k dx

          = − x cos x + kx + sin x − kx + c

          = − x cos x + sin x + c
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59.6 Integration by Parts: Worked examples

59.6.1  Example:

1 ∫ x cos x dxFind:  

Solution:

 u = x &  
dv

dx
= cos x         u = xLet: Note:  becomes simpler when differentiated.

    
du

dx
= 1         v = ⌠

⌡  
dv

dx
= ⌠

⌡  cos x = sin x

∫ x cos x dx = x sin x − ∫ sin x × 1 dx

       = x sin x + cos x + c

Alternative (longer) Solution:

 u = cos x &  
dv

dx
=  xLet:

    
du

dx
= −sin x       v =

x2

2

∫ x cos x dx = sin x . 
x2

2
− ∫

x2

2
 (−sin x)  dx

       =
x2

2
sin x + ∫

x2

2
 sin x  dx etc etc

As you can see, this gives a more involved solution, that has to have another round of integration
by parts. This emphasises the importance of choosing u wisely. In this case it would be prudent to
start again with .u = x

2 ∫ x sec
2
x dxFind:  

Solution:

 u = x &  
dv

dx
= sec

2
xLet:

    
du

dx
= 1         v = ⌠

⌡  
dv

dx
= tan x   Standard tables

∫ x sec
2
x dx = x tan x − ∫ tan x × 1 dx

       = x sin x + ln (cos x)  + c        Standard tables
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3 ∫ (4x + 2)  sin 4x dxFind:  

Solution:

 u = 4x + 2 &  
dv

dx
= sin 4xLet:

     
du

dx
= 4       v = − 

1

4
cos 4x

∫ (4x + 2)  sin 4x dx = (4x + 2) (− 
1

4
cos 4x) − ∫ − 

1

4
cos 4x . 4 dx

         = − 
1

4
(4x + 2)  cos 4x + ∫ cos 4x  dx

         = − 
1

4
(4x + 2)  cos 4x +

1

4
sin 4x + c

4 ∫ x
2 sin x dxFind:  

Solution:

 u = x
2 &  

dv

dx
= sin xLet:

    
du

dx
= 2x         v = ⌠

⌡  
dv

dx
= − cos x

∫ x
2 sin x dx = x

2 (− cos x) − ∫ − cos x . 2x dx

         = − x2 cos x + ∫ 2x cos x  dx

Now integrate by parts again and then one final integration to give…

 u = 2x &  
dv

dx
= cos xNow let

       
du

dx
= 2     v = sin x

∫ x
2 sin x dx = − x2 cos x +



2x sin x − ∫ sin x × 2  dx




       = − x2 cos x + 2x sin x − ∫ 2 sin x dx

       = − x2 cos x + 2x sin x − 2 (− cos x) + c

       = − x2 cos x + 2x sin x + 2 cos x + c

       = 2 cos x −  x2 cos x + 2x sin x + c

       = (2 −  x2 ) cos x + 2x sin x + c

Note: Integrating any function of the form  or , will require n rounds of integration
by parts.

xn sin x xn cos x
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5 ∫
π

0
x

2 cos x dxFind:  

Solution:

 u = x
2 &  

dv

dx
= cos xLet:

     
du

dx
= 2x         v = ⌠

⌡  
dv

dx
= sin x

∫
π

0
x

2 cos x dx = 
x

2 sin x


π

0
− ∫

π

0
sin x . 2x dx

         = [0 − 0] − ∫
π

0
2x sin x dx

Now integrate by parts again, and then one final integration to give…

 u = 2x  &  
dv

dx
= sin xNow let:

       
du

dx
= 2    v = − cos x

∫
π

0
x

2 cos x dx = 0 − {[2x (− cos x)]π

0
− ∫

π

0
− cos x . 2 dx}

   = 0 − {[−2x cos x]π

0
+ ∫

π

0
2 cos x dx}

   = − {[2π − 0] + ∫
π

0
2 cos x dx}

   = −2π − ∫
π

0
2 cos x dx

   = −2π − [2 sin x ]π
0

   = −2π − [0 − 0] = −2π

6 ∫ 2x sin (3x − 1)  dxFind:  

Solution:

 u = 2x &  
dv

dx
= sin (3x − 1)Let:

    
du

dx
= 2            v = − 

1

3
cos (3x − 1)

∫ 2x sin (3x − 1)  dx = 2x (− 
1

3
cos (3x − 1)) − ∫ − 

1

3
cos (3x − 1)  . 2 dx

        = − 
2

3
 x cos (3x − 1) +

2

3 ∫ cos (3x − 1)  dx

        = − 
2

3
 x cos (3x − 1) +

2

3
×

1

3
 sin (3x − 1) + c

        = − 
2

3
 x cos (3x − 1) +

2

9
 sin (3x − 1) + c

        =
2

9
 sin (3x − 1) −  

2

3
 x cos (3x − 1) + c
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7 ∫ x (2x + 3)5  dxSolve by parts

This can be solved by inspection, but is included here for completeness.

Solution:

 u =  x 
dv

dx
= (2x + 3)5

Let:

du

dx
= 1    

   ∫ (ax + b)n  dx =
1

a (n + 1)
 (ax + b)n + 1 + cRecall:

  ∴ v = ∫ (2x + 3)5  dx =
1

2 (6)
 (2x + 3)6 + c

   =
1

12
 (2x + 3)6 + c

  ∫ u 
dv

dx
 dx = uv − ∫ v 

du

dx
 dxRecall:

∫ x (2x + 3)5  dx = x .
1

12
 (2x + 3)6 − ∫

1

12
 (2x + 3)6 × 1 dx

   =
x

12
 (2x + 3)6 −

1

12 ∫ (2x + 3)6  dx

   =
x

12
 (2x + 3)6 −

1

12
×

1

2 × 7
(2x + 3)7 + c

   =
x

12
 (2x + 3)6 −

1

12
×

1

14
 (2x + 3)7 + c

   =
1

12
(2x + 3)6 


x −

1

14
 (2x + 3)

+ c

   =
1

12
(2x + 3)6 



14x

14
 −

(2x + 3)
14





+ c

   =
1

12
(2x + 3)6 



14x − 2x − 3)

14





+ c

   =
1

12
(2x + 3)6 



12x − 3

14





+ c

   =
3

12
(2x + 3)6 



4x − 1

14





+ c

   =
1

56
(2x + 3)6 [4x − 1] + c

   =
1

56
(2x + 3)6 (4x − 1) + c
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8 ∫ x e3x dxFind:  

Solution:

 u = x &  
dv

dx
= e

3xLet:

     
du

dx
= 1         v =

1

3
e

3x

∫ x e3x dx = x . 
1

3
e

3x −
⌠
⌡

1

3
e

3x × 1 dx

∫ x e3x dx =
1

3
x e3x −

1

9
e

3x + c

  =
1

3
 e3x (x −

1

3) + c

  =
1

9
 e3x (3x − 1) + c

9 ∫ x
2 e4x dxFind:  

Solution:

 u = x
2 &  

dv

dx
= e

4xLet:

     
du

dx
= 2x         v =

1

4
e

4x

∫ x
2 e4x dx = x

2 . 
1

4
e

4x −
⌠
⌡

1

4
e

4x . 2x dx

     =
1

4
x

2 e4x −
1

2
⌠
⌡ x e4x dx

    =
1

4
x

2 e4x −
1

2
⌠
⌡ u  

dv

dx
 dx

Now integrate by parts again and then one final integration to give…

 u = x &  
dv

dx
= e

4xNow let:

       
du

dx
= 1         v =

1

4
e

4x

    ∴ ⌠
⌡ x e4x dx = x . 

1

4
e

4x − ⌠
⌡

1

4
e

4x dx

         =
1

4
 x e4x −

1

16
e

4x

Substituting back into the original...

∴ ⌠
⌡ x

2 e4x dx =
1

4
x

2 e4x −
1

2 (1

4
 x e4x −

1

16
e

4x) + c

     =
1

4
x

2 e4x −
1

8
 x e4x +

1

32
e

4x + c

     = e
4x ( 14x

2 −
1

8
x +

1

32) + c

     ⌠
⌡

x
2 e4x dx =

1

32
 e4x ( 8x

2 − 4x + 1) + c
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10 ∫
∞

0
x e−ax dxInfinite integral example. Find:  

Solution:

 u = x &  
dv

dx
= e

−axLet:

     
du

dx
= 1   v = −

1

a
e

−ax

∫
∞

0
x e−ax dx = 


−

x

a
e

−ax


 
∞

0
− ∫

∞

0
1 × (−1

a
e

−ax)  dx

      = 

−

x

a
e

−ax


 
∞

0
+

1

a ∫
∞

0
e

−ax dx

      = 

−

x

a
e

−ax +
1

a
× (−1

a
e

−ax)  
∞

0

      = 

−

x

a
e

−ax −
1

a2
e

−ax


 
∞

0

      = 

−

x

aeax
−

1

a2eax




 
∞

0

x → ∞,  
x

aeax
→ 0  

1

a2eax
→ 0As and

∴ ∫
∞

0
x e−ax dx = [0 − 0] − 


0 −

1

a2




   =
1

a2

Alternatively, you can evaluate the bracketed part early, thus:

∫
∞

0
x e−ax dx = 


− 

x

a
 e−ax


 
∞

0
+

1

a ∫
∞

0
e

−ax dx

      = 

− 

x

aeax




 
∞

0
+

1

a ∫
∞

0
e

−ax dx

      = [0 − 0] +
1

a ∫
∞

0
e

−ax dx

∫
∞

0
x e−ax dx =

1

a ∫
∞

0
e

−ax dx

       = 


− 

1

a2eax





 
∞

0

       = [0] −



− 

1

a2





∫
∞

0
x e−ax dx =

1

a2
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59.7 Integration by Parts: ln x

So far we have found no means of integrating , but now, by regarding  as the product , we can
now apply integration by parts.  In this case make  as  is hard to integrate and we know how to
differentiate it.

ln x ln x ln x × 1
u = ln x ln x

The ‘trick’ of multiplying by 1 can be used elsewhere, especially for integrating inverse trig functions.

59.7.1  Example:

1 Integrating ln x

∫ ln x × 1 dx  Multiply by 1 to give a product to work with.

 u = ln x &  
dv

dx
=  1Let:

  
du

dx
=

1

x
      v = x

∫ ln x × 1 dx = x ln x −
⌠
⌡

x 
1

x
 dx

    = x ln x − ⌠⌡ dx

    = x ln x − x + c

     ∫ ln x  = x (ln x − 1) + c

2 ∫ x
4 ln x dxFind:  

Solution:
Following the guidelines on choice of u & dv, then we would let  and u = x dv

dx
= ln x

However,  is difficult to integrate, so choose ln x u = ln x

 u = ln x &  
dv

dx
=  x4Let:

     
du

dx
=

1

x
      v =

1

5
 x5

∫ x
4 ln x dx = ln x . 

1

5
 x5 − ∫

1

5
 x5 · 

1

x
 dx

     =
1

5
 x5 ln x −

1

5 ∫  x4 dx

     =
1

5
 x5 ln x −

1

5
×

1

5
 x5 + c

∫ x
4 ln x dx =

1

5
 x5 ln x −

1

25
 x5 + c

      =
1

5
 x5 (ln x −

1

5) + c

      =
1

25
 x5 (5 ln x − 1) + c
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3 ∫
8

2
x ln x dxEvaluate:  

Solution:
As above, choose u = ln x

 u = ln x &  
dv

dx
=  xLet:

     
du

dx
=

1

x
      v =

x2

2

 ∫
8

2
x ln x dx = 



x2

2
 ln x




8

2

− ∫
8

2

x2

2
 · 

1

x
 dx

   = 


x2

2
 ln x




8

2

− ∫
8

2

x

2
 dx

   = 


x2

2
 ln x −

x2

4





8

2

   = (32 ln 8 −  16) − (2 ln 2 − 1)

   = 32 ln 8 − 2 ln 2 − 15

   = 32 ln 23 − 2 ln 2 − 15

   = 96 ln 2 − 2 ln 2 − 15

   ∫
8

2
x ln x dx = 94 ln 2 − 15

4 ∫ x ln x dxFind:  

Solution:

 u = ln x &  
dv

dx
= x Let:

     
du

dx
=

1

x
      v = ∫ x =

2

3
 x

3
2

∫ x ln x dx = ln x . 
2

3
 x

3
2 − ∫

2

3
 x

3
2 · 

1

x
 dx

     =
2

3
 x

3
2 ln x −

2

3 ∫  x
1
2 dx

     =
2

3
 x

3
2 ln x −

2

3
×

2

3
 x

3
2 + c

     =
2

9
 x3 ( 3 ln x − 2) + c
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59.8 Integration by Parts: Special Cases

These next examples use the integration by parts twice, which generates a term that is the same as the original
integral. This term can then be moved to the LHS, to give the final result by division.

Generally used for integrals of the form  or . In this form, the choice of u & dv does not
matter.

eax sin bx eax cos bx

59.8.1  Example:

1  ⌠
⌡

ln x
x

 dxFind:

Solution:

 u = ln x &  
dv

dx
=

1

x
Let:

     
du

dx
=

1

x
      v = ln x

 ⌠
⌡

ln x
x

 dx = ln x . ln x − ⌠
⌡ ln x . 

1

x
 dx

      = (ln x)2 − ⌠
⌡

ln x
x

 dx

 2 ⌠
⌡

ln x
x

 dx = (ln x)2

∴ ⌠
⌡

ln x
x

 dx =
1

2
(ln x)2 + c     Note:  is not the same as (ln x)2 ln x2

2  ∫ e
x sin x dxFind:

Solution 1:

 u = sin x &  
dv

dx
=  exLet:

     
du

dx
= cos x         v = e

x

∫ e
x sin x dx = sin x . ex − ∫ e

x cos x dx

Now integrate by parts again, which changes cos x to sin x to give…

     u = cos x  &  
dv

dx
= e

x

         
du

dx
= − sin x       v = e

x

∫ e
x sin x dx = e

x sin x −


cos x . ex − ∫ e

x (− sin x)  dx



        = e
x sin x −



e

x cos x + ∫ e
x sin x dx




∫ e
x sin x dx = e

x sin x −  ex cos x − ∫ e
x sin x dx

∴ 2 ∫ e
x sin x dx =  ex (sin x − cos x) + c

∴  ∫ e
x sin x dx =

1

2
 ex (sin x − cos x) + c
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Solution 2:

 u = e
x &  

dv

dx
= sin xLet:

     
du

dx
= e

x         v = − cos x

∫ e
x sin x dx = e

x (− cos x) − ∫ − cos x . ex dx

∫ e
x sin x dx = − ex cos x + ∫ cos x . ex dx

Now integrate by parts again to give…

     u = e
x  &  

dv

dx
= cos x

         
du

dx
= e

x    v = sin x

  ∫ e
x sin x dx = − ex cos x +



e

x. sin x − ∫ sin x . ex dx



           = − ex sin x + e
x cos x − ∫ e

x sin x dx

2 ∫ e
x sin x dx = e

x sin x −  ex cos x + c

  ∫ e
x sin x dx =

1

2
 ex (sin x − cos x) + c
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3  ∫ e
x cos x dxFind:

Solution:

 u = cos x &  
dv

dx
=  exLet:

     
du

dx
= −sin x        v = e

x

∫ e
x cos x dx =  cos x . ex − ∫ e

x (−sin x)  dx

∫ e
x cos x dx =  ex cos x + ∫ e

x sin x dx

Now integrate by parts again and then one final integration to give…

      u = sin x  &  
dv

dx
= e

x

    ∴  
du

dx
= cos x          v = e

x

∫ e
x cos x dx =  ex cos x +



sin x . ex − ∫ e

x cos x dx



∫ e
x cos x dx = e

x (cos x +  sin x) − ∫ e
x cos x dx 

2 ∫ e
x cos x dx = e

x (cos x +  sin x) + c

∴ ∫ e
x cos x dx =

1

2
e

x (cos x +  sin x) + c
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4  ∫ e
2x sin 4x dxFind:

Solution:

 u = sin 4x &  
dv

dx
=  e2xLet:

     
du

dx
= 4 cos 4x       v =

1

2
 e2x

⌠
⌡ e

2x sin 4x dx = sin 4x . 
1

2
 e2x − ⌠

⌡
1

2
 e2x . 4 cos 4x dx

⌠
⌡ e

2x sin 4x dx =
1

2
 e2x sin 4x − 2 ⌠

⌡ e
2x cos 4x dx

Now integrate by parts again and then one final integration to give…

      u = cos 4x  &  
dv

dx
= e

2x

    ∴  
du

dx
= − 4 sin 4x     v =

1

2
 e2x

⌠
⌡

e
2x sin 4x dx =

1

2
 e2x sin 4x − 2




cos 4x . 

1

2
 e2x − ⌠

⌡
1

2
 e2x . (− 4 sin 4x)  dx





⌠
⌡

e
2x sin 4x dx =

1

2
 e2x sin 4x − 2




1

2
 e2x cos 4x + 2

⌠
⌡

e
2x sin 4x dx





⌠
⌡ e

2x sin 4x dx =
1

2
 e2x sin 4x − e

2x cos 4x − 4 ⌠
⌡ e

2x sin 4x dx

5 ⌠
⌡ e

2x sin 4x dx =
1

2
 e2x sin 4x − e

2x cos 4x + c

        =
1

2
 e2x sin 4x −

2

2
e

2x cos 4x + c

5 ⌠
⌡ e

2x sin 4x dx =
1

2
 e2x (sin 4x − 2 cos 4x) + c

∴ ⌠
⌡ e

2x sin 4x dx =
1

10
 e2x (sin 4x − 2 cos 4x) + c

59.9 Integration by Parts Digest

     ⌠
⌡ u 

dv

dx
 dx = uv − ⌠

⌡ v 
du

dx
 dx

     ∫
b

a

u
dv

dx
 dx = uv  

a

b

− ∫
b

a

v
du

dx
dx
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60.1 Intro to Integration by Substitution

Also known as integration by change of variable. This is the nearest to the chain rule that integration can get. It is
used to perform integrations that cannot be done by other methods, and is also an alternative method to some
other methods. It is worth checking if the integration can be done by inspection, which may be simpler. 

Substitution is often used to define some standard integrals.

The object is to substitute some inner part of the function by a second variable u, and change all the instances of
x to be in terms of u, including dx.

The basic argument for Integration by Substitution is:

    y = ∫ f (x)  dxIf

    
dy

dx
= f (x)

From the chain rule, if u is a function of x

     
dy

du
=

dy

dx
×

dx

du
      

     
dy

du
= f (x)

dx

du

    ∫
dy

du
du = ∫ f (x)

dx

du
 du

         y = ∫ f (x)  
dx

du
 du

  ∴ ∫ f (x)  dx = ∫ f (x)  
dx

du
 du

 

60.2 Substitution Method

j Used for integrating products and quotients,

j Let u = part of the expression, usually the messy part in brackets or the denominator of a fraction,

j If necessary, express any other parts of the function in terms of u,

j Differentiate u to find ,du
dx

j Re-arrange  to find dx in terms of du as we need to replace dx if we are to integrate an expression

w.r.t u, i.e. we need to find ,

du
dx

dx = (z) du

j Substitute the expressions, found above, for x and dx, back into the original integral and integrate in
terms of u. It should be reasonable to integrate, or allow the use of standard integrals,

j If the integration is a definite integral, change the x limits to limits based on u,

j Put your x’s back in again at the end, and finish up,

j If the substitution is not obvious, then it should be given to you in the exam,

j There is often more that one substitution that could be chosen, practise makes perfect,

j All integrals that can be done by inspection, can also be done by substitution.
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60.3 Required Knowledge

From C3 module recall:

    ⌠
⌡

(ax + b)n =
1

a (n + 1)
 (ax + b)n + 1 + c

    ⌠
⌡

1

ax + b
 dx =

1

a
 ln | ax + b | + c

    ⌠
⌡ e

(ax + b) dx =
1

a
 e(ax + b) + c

60.4 Substitution: Worked Examples

60.4.1  Example:

Examples 1 & 2 are based on the form of: ∫ f (x)  dx = ∫ f (x)  
dx

du
 du

1 Use substitution to find: ∫ (5x − 3)3
dx

Solution:

 u = 5x − 3Let: 

du

dx
= 5 ⇒

dx

du
=

1

5

∫ f (x)  dx = ∫ f (x)  
dx

du
 du

Substituting:

 ⌠
⌡ (5x − 3)3

dx = ⌠
⌡ (u)3  

1

5
 du ⇒

1

5
⌠
⌡ (u)3  du

        =
1

5
×

1

4
 u4 + c

        =
1

20
(5x − 3)4 + c

2 Use substitution to find:  ⌠⌡
1

4x + 2
 dx

Solution:

 u = 4x + 2Let: 

du

dx
= 4 ⇒

dx

du
=

1

4

Substituting

⌠
⌡

1

4x + 2
 dx = ⌠

⌡
1

u
 
1

4
 du =

1

4
⌠
⌡

1

u
 du

       =
1

4
 ln u + c

       =
1

4
ln (4x + 2) + c

This is a standard result:

⌠
⌡

1

ax + b
 dx =

1

a
 ln (ax + b) + c
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The integration process can be streamlined somewhat if we find dx in terms of u and du, rather that find 

specifically each time, as in the following examples.

dx
du

3 Use substitution to find:

       ⌠
⌡

1

x + x
 dx

Solution:

 u = x,  ⇒  u = x
1
2Let: 

du

dx
=

1

2
 x−1

2      ⇒  
du

dx
=

1

2 x

du =
1

2 x
 dx   ⇒  dx = 2 x du

 ∴ dx = 2u dubut we still have x involved, so substitute for x

Substituting into the original:

⌠
⌡

1

x + x
 dx = ⌠

⌡
1

u2 + u
 2u du ⇒ ⌠

⌡
2u

u (u + 1)
 du ⇒ ⌠

⌡
2

(u + 1)
 du

         = 2 ln | u + 1 | + c

         = 2 ln | x + 1 | + c

4 Use substitution to find:

       ∫ 3x 1 + x2 dx

Solution:

 u = x
2Let: 

du

dx
= 2x ⇒  dx =

du

2x

Substituting:

⌠
⌡ 3x 1 + x2 dx = 3 ⌠

⌡ x (1 + u)
1
2  

du

2x
⇒

3

2
⌠
⌡ (1 + u)

1
2 du

        =
3

2
 ×

2

3
(1 + u)

3
2 + c = (1 + u)

3
2 + c

        = (1 + x
2)

3
2 + c

Alternative solution:

 u = 1 + x
2        ⇒  x2 = u − 1 ⇒ x = (u − 1)

1
2Let: 

du

dx
= 2x ⇒  dx =

du

2x
=

du

2 (u − 1)
1
2

Substituting:

⌠

⌡

3x 1 + x2 dx = 3 ⌠

⌡

(u − 1)
1
2 (u)

1
2  

du

2 (u − 1)
1
2

⇒
3

2
⌠

⌡

(u)
1
2 du

        =
3

2
 ×

2

3
(u)

3
2 + c = (u)

3
2 + c

        = (1 + x
2)

3
2 + c
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5 Use substitution to find: ∫ 3x (1 + x
2)5

dx

Solution:

 u = (1 + x
2)   

du

dx
= 2x ⇒  dx =

du

2x
Let: 

Substituting:

⌠
⌡ 3x (1 + x

2)5
dx = 3 ⌠

⌡ x (u)5  
du

2x
⇒

3

2
⌠
⌡ (u)5  du

          =
3

2
×

1

6
 u6 + c =

1

4
 u6 + c

          = ¼ (1 + x
2)6

+ c

6 Use substitution to find:  ⌠⌡
6x

2x + 1
 dx

Solution:

 u = (2x + 1)   
du

dx
= 2 ⇒  dx =

du

2
Let:  

Substituting

⌠
⌡

6x

2x + 1
 dx = ⌠

⌡

6x

u
  

du

2
⇒ ⌠

⌡

3x

u
1
2

  du

x xWe have an left, so go back to the substitution and find 

u = 2x + 1 ⇒   x =
u − 1

2

∴ ⌠
⌡

3x

u
1
2

  du = 3 ⌠
⌡

x  
1

u
1
2

  du = 3 ⌠
⌡

u − 1

2
 ×  

1

u
1
2

 · du

   =
3

2
⌠

⌡

u − 1

u
1
2

  du =
3

2
⌠

⌡

 



u

u
1
2

−
1

u
1
2

 


du

   =
3

2
⌠
⌡

[u
+1

2 − u
−1

2 ] du

   =
3

2
 



2u

3
2

3
− 2u

1
2 





+ c

   = u
3
2 − 3u

1
2 + c = u

1
2 [u − 3] + c

   = (2x + 1)
1
2 (2x + 1 − 3) + c

   = 2 (x − 1) (2x + 1)
1
2 + c

7   ⌠⌡ 2x ex2
dxFind:

Solution:

 u = x
2  

du

dx
= 2x  ⇒ dx =

du

2x
Let: 

∫ 2x ex2
dx = ∫ 2x eu  

du

2x

    = ∫ e
u du = e

u + c

    = e
x2

+ c
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8 Find:
⌠
⌡

ex

(1 − ex)2
 dx

Note  is a derivative of  not , so use substitution.e
x 1 − e

x (1 − e
x)2

Solution:

 u = 1 − e
xLet: 

du

dx
= −e

x ⇒ dx = − 
du

ex

Substituting

⌠
⌡

ex

(1 − ex)2
 dx = −

⌠
⌡

ex

(u)2
 
du

ex
⇒ −

⌠
⌡

1

u2
  du

       = − ⌠⌡ u
−2

du

       = u
−1 + c

       =
1

1 − ex
+ c

9 Use substitution to find:

       ∫ (x + 5) (3x − 1)5
dx

Solution:

 u = 3x − 1Let: 

du

dx
= 3 ⇒  dx =

du

3

Substituting

∫ (x + 5) (3x − 1)5
dx =

⌠
⌡

(x + 5) (u)5
· 

1

3
 du

x xWe have an left, so go back to the substitution and find 

u = 3x − 1 ⇒   x =
u + 1

3

∫ (x + 5) (3x − 1)5
dx =

1

3

⌠
⌡ (u + 1

3
+ 5) u

5 du

     =
1

3
⌠
⌡ (u + 1 + 15

3 ) u
5 du

     =
1

9
⌠
⌡ (u + 16) u

5 du =
1

9
⌠
⌡

(u6 + 16u
5)  du

     =
1

9




u7

7
+

16u6

6





+ c =
1

9




u7

7
+

8u6

3





+ c

     =
1

9




3u7 + 56u6

21





+ c =
1

189
(3u

7 + 56u
6) + c

     =
u6

189
(3u + 56) + c

     =
(3x − 1)6

189
[3 (3x − 1) + 56] + c

     =
(3x − 1)6

189
(9x + 53) + c
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10 Use substitution to find:

     ∫ 4 − x2  dx [  x = a / b sin u]Has the form   usea2 − b2x2

Solution:

 x = 2 sin uLet: 

dx

du
= 2 cos u  ∴  dx = 2 cos u du

Substituting

∫ 4 − x2  dx = ∫ 4 − (2 sin u)2 ×  2 cos u du

   = ∫ 4 −  4sin2u  ×  2 cos u du = ∫ 4 (1 −  sin2u) ×  2 cos u du

cos
2
u = 1 −  sin

2
ubut 

   = ∫ 4 cos 2u  × 2 cos u du = ∫ 2 cos u × 2 cos u du

   = 4 ∫ cos
2
u du

 2 cos
2
u = 1 +  cos 2ubut: 

   = 4 ⌠
⌡

1

2
 (1 + cos 2u) du

   = 2 ⌠⌡ (1 + cos 2u) du

   = 2 u +
1

2
sin 2u + c

   = 2u + sin 2u + c

 Substituting back:

  x = 2sin uGiven:

 sin
2
u = 1 − cos

2
uIdentity:

 sin 2u = 2 sin u cos uIdentity:

∴  sin u & cos uNeed to find 

∴  sin u =
x

2
 & sin

2
u =

x2

4

sin
−1 ( x

2) = u

cos
2
u = 1 − sin

2
u

cos
2
u = 1 −

x2

4
 =

4 − x2

4

cos u =
1

2
4 − x2

 = 2sin
−1 ( x

2) + 2 ( x

2) ×
1

2
4 − x2 + cSubstituting:

∴  ∫ 4 − x2 dx = 2sin
−1 ( x

2) + ( x

2) 4 − x2 + c
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60.5 Definite Integration using Substitutions

Because of the substitution, you must also change the limits into the new variable, so we can then evaluate the
integral as soon as we have done the integration. This saves you having to put the ’s back in at the end and
using the original limits.

x

60.5.1  Example:

1 Use substitution to find:

   ∫
1

0
4 − x2  dx   [  x = a / b sin u]Has form   : usea2 − b2x2

Solution:

 x = 2sin uLet: 

dx

du
= 2 cos u  ∴ dx = 2 cos u du

Limits:

x 2sin u sin u u

1 1 1
2

π
6

0 0 0 0

From previous example

∫ 4 − x2  dx = 2u + sin 2u + c

∫
1

0
4 − x2  dx = 2u + sin 2u0

u = π
6

= (π
3

+
3

2
) − 0

      =
π
3

+
3

2
=

π + 3

6

2 Use substitution to find:

     ∫
1

0

1

1 + x2
 dx

Solution:

 x = tan uLet: 

dx

du
= sec

2 u   ∴ dx = sec
2 u du

Limits:

x tan u u

1 1 0

0 0 π
4

Substituting:

∫
1

0

1

1 + x2
 dx = ∫

x = 1

0

1

1 + tan2u
sec

2 u du

   = ∫
x = 1

0
1 du     1 + tan

2
u = sec

2 uSince: 

   = [u]u = π
4

u = 0
=

π
4
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3      ∫
2

0
x (2x − 1)6  dx

Solution:

 u = 2x − 1  ⇒ x = 1
2 (u + 1)Let: 

du

dx
= 2  ⇒  dx = 1

2 du

Limits:

x u = 2x − 1

2 3

1 −1

Substituting:

∫
2

0
x (2x − 1)6  dx = ∫

u = 3

u = −1

1
2 (u + 1) (u6) 1

2 du

    =
1

4 ∫
3

−1
u

7 + u
6 du

    =
1

4




1

8
u

8 +
1

7
u

7



 
−1

3

    =
1

4




1

8
u

8 +
1

7
u

7



 
−1

3

    =
1

4




1

8
3

8 +
1

7
3

7



−
1

4




1

8
(−1)8 +

1

7
(−1)7




    = ¼ (1132·57) = 283·14

4      ∫
2

−1
x

2 (x3 + 1) dx

Solution:

u = x
3 + 1  ⇒ x = 1

2 (u + 1)Let: 

du

dx
= 3x

2  ⇒  dx =
1

3x2
 du

Limits:

x u = x3 + 1

2 9

−1 0

Substituting:

∫
2

−1
x

2 (x3 + 1) dx = ∫
u = 9

u = 0
x

2
u

1
2

1

3x2
 du

    =
1

3 ∫
9

0
u

1
2 du

    =
1

3





1
3
2

u
3
2




 9

 0

=
1

3




2

3
u

3
2




 9

 0

    =
1

3




2

3
9

3
2




− 0 =
2

9
9

3
2

    = 6
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60.6 Reverse Substitution

This is where we have to recognise the substitution by ourselves, by recognising the reverse chain rule.

60.6.1  Example:

1 Use substitution to find: ⌠
⌡

1

x
 ln x dx

Solution:

 x = e
uLet: 

dx

du
= e

u ∴ dx = e
u du

Substituting

⌠
⌡

1

x
 ln x dx = ⌠

⌡
1

eu
 ln eu ×  eu du ⇒ ⌠

⌡  ln eu  du

 u ln e = u ∴ = ⌠
⌡  u du =

u2

2
+ cbut:

x = e
u ∴ u = ln x

⌠
⌡

1

x
 ln x dx =

(ln x)2

2
+ c

2   ⌠
⌡

6x

1 + x2
 dxFind:

Solution:

 u = 1 + x
2Let: 

du

dx
= 2x  ⇒  dx =

du

2x

⌠
⌡

6x

1 + x2
 dx = ⌠

⌡
6x

u
 ×

du

2x
= ⌠

⌡
3

u
 du

   =
⌠

⌡

3u
−1

2 du =
3u

1
2

1
2

+ c

   = 6u
1
2 + c

   = 6 (1 + x
2)

1
2 + c ⇒ 6 1 + x2 + c

3 Use reverse substitution to find: ∫ x
2 1 + x3  dx

Solution:

 u = 1 + x
3Let: 

du

dx
= 3x

2  ⇒  dx =
du

3x2

⌠
⌡ x

2 1 + x3  dx = ⌠
⌡ x

2
u ×

du

3x2
=

1

3
⌠
⌡ u

1
2 du

        =
1

3


2

3
 u

3
2

+ c

        =
2

9

(1 + x
3)

3
2  + c
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4 Consider:

⌠
⌡

7x

(1 + 2x2)3
 dx

Solution:

 u = 1 + 2x
2Let: 

du

dx
= 4x  ⇒  dx =

du

4x

⌠
⌡

7x

(1 + 2x2)3
 dx = ⌠

⌡
7x

(u)3
 . 

du

4x
= ⌠

⌡
7

4u3
  du

    = ⌠⌡
7

4
u

−3 du =
7

4
⌠⌡ u

−3 du

    =
7

4



1

−2
u

−2 
+ c = − 

7

8
u

−2 + c ⇒ − 
7

8u2
+ c

    = − 
7

8
(1 + 2x

2)−2
+ c ⇒ − 

7

8 (1 + 2x2)2
+ c

In the following two questions, note that we have a fraction, of which the top is the differential of the
denominator, or a multiple thereof.

⌠
⌡

f ′ (x)
f (x)

 dx = ln |  f (x)  | + c

5 Try:

⌠
⌡

cos x − sin x
sin x + cos x

 dx

Solution:

 u = sin x + cos xLet: 

du

dx
= cos x − sin x  ⇒  dx =

du

cos x − sin x

⌠
⌡

cos x − sin x
sin x + cos x

 dx = ⌠
⌡

cos x − sin x
u

×
du

cos x − sin x

    = ⌠
⌡

1

u
 du

    = ln u + c

    = ln | sin x + cos x | + c
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6 Try:

⌠
⌡

ex − e−x

ex + e−x
 dx

Solution:

 u = e
x + e

−xLet: 

du

dx
= e

x − e
−x  ⇒  dx =

du

ex − e−x

⌠
⌡

ex − e−x

ex + e−x
 dx = ⌠

⌡
ex − e−x

u
×

du

ex − e−x
= ⌠

⌡
1

u
du

   = ln u + c

   = ln (ex + e
−x) + c     (ex + e

−x)   is always +ve

7 Try:

⌠
⌡

sec2 x
tan3 x

 dx

Solution:
Note that  is the derivative of  not sec2 x tan x tan3 x

 u = tan xLet: 

du

dx
= sec

2 x  ⇒  dx =
du

sec2 x

⌠
⌡

sec2 x
tan3 x

 dx = ⌠
⌡

sec2 x
u3

×
du

sec2 x

    = ⌠
⌡

1

u3
du

    = ⌠⌡ u
−3

du

    = − 
1

2
 u−2 + c

    = − 
1

2 u2
+ c

    = − 
1

2 tan2 x
+ c

The common trig functions that are of the form  are:⌠
⌡

f ′ (x)
f (x)

 dx

Function  y = f (x) Integral ∫ f (x) dx

tan x     ln | sec x | + c ∗

cot x     ln | sin x | + c ∗

cosec x − ln | cosec x +  cot x | + c ∗

sec x     ln | sec x +  tan x | + c ∗
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60.7 Harder Integration by Substitution

a
2 + b

2
x

2  x =
a

b
 tan uIf the integrand contains use

a
2 − b

2
x

2  x =
a

b
 sin uIf the integrand contains use

N.B. integrand = the bit to be integrated.

60.7.1  Example:

1 ⌠
⌡

1

25 + 16x2
 dx

i.e.  a = 5,  b = 4

x =
5

4
 tan u ⇒  

dx

du
=

5

4
 sec

2 uLet: 

      ∴ dx =
5

4
 sec

2 u du

⌠
⌡

1

25 + 16x2
 dx = ⌠

⌡
1

25 + 16 (5
4 tan u)2 ×

5

4
 sec

2 u du

    = ⌠
⌡

1

25 + 25 tan2u
×

5

4
 sec

2 u du

    = ⌠
⌡

1

25 (1 +  tan2u) ×
5

4
 sec

2 u du

    = ⌠
⌡

1

25sec 2u
×

5

4
 sec

2 u du

    = ⌠
⌡

1

5
×

1

4
 du = ⌠

⌡
1

20
 du

    =
1

20
 u + c         tan u =

4x

5
 Note:

    =
1

20
 tan

−1 (4x

5 ) + c        u = tan
−1 (4x

5
 )Note:
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2 ∫
1

0
(1 − x2) dx

 x =  sin u ⇒  
dx

du
= cos u ∴ dx = cos u duLet: 

 ⇒     u = sin
−1

xLimits: 

 

x u

1 sin−1 x = π
2

0 sin−1 0 = 0

 

∫
1

0
(1 − x2) dx = ∫

u = π
2

0
(1 − sin2u) × cos u du

    = ∫
π
2

0
(cos 2u) × cos u du

    = ∫
π
2

0
cos

2 u du

    =
1

2 ∫
π
2

0
(1 + cos 2u)  du

    =
1

2


u +

1

2
sin 2u


  

π
2

0

    =
1

2



(π

2
+

1

2
sin π) − (0 +

1

2
sin 0)

    =
π
4

60.8 Options for Substitution

Substitution allows a wide range of functions to be integrated, but it is not always obvious which one should be
used. The following table attempts to give some clues as to which to choose as the appropriate substitution.

For : Try :

(ax + b)n u = ax + b

n (ax + b) un = ax + b

a − bx2 x = a
b

 sin u

a + bx2 x = a
b

 tan u

bx2 − a x = a
b

 sec u

ex u = ex  : x = ln u

        ln (ax + b)             ax + b = eu    :    x = 1
aeu − b

a    
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60.9 Some Generic Solutions

1 Use substitution to find: ∫ x (ax + b)n
dx

Solution:

 u = ax + b  
du

dx
= a ⇒ dx =

du

a
Let: 

ax = u − b        x =
u − b

a

Substituting:

⌠
⌡ x (ax + b)n

dx = ⌠
⌡

u − b

a
(u)n  

du

a

        =
1

a2

⌠
⌡ (u − b) u

n du

        =
1

a2

⌠
⌡ (un + 1 − bu

n)  du

        =
1

a2




un + 2

n + 2
−

bun + 1

n + 1


 + c

        =
1

a2




(ax + b)n + 2

n + 2
−

b (ax + b)n + 1

n + 1
 


 + c
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61.1 Intro to Partial Fractions

 
3

2x + 1
+

2

x − 2
=

7x − 8

(2x + 1) (x − 2)
If: 

 then we ought to be able to convert

 
7x − 8

(2x + 1) (x − 2)
 

3

2x + 1
+

2

x − 2
 back into its partial fractions of:  

The process is often called decomposition of a fraction. To do this, we create an identity that is valid for all
values of x and then find the missing constants of the partial fractions. 

To decompose a fraction we need to start with a proper fraction. Improper fractions (see later) have to be
converted into a whole number part with a proper fraction remainder. Later on, partial fractions will be useful in
integration, differentiation and the binomial theorem.

There are four different types of decomposition based on the sort of factors in the denominator. These are:

j Linear factors in the denominator:

x

(ax + b) (cx + d)
≡

A

(ax + b)
+

B

(cx + d)

j Squared terms in the denominator (includes quadratics that will not factorise easily)

x

(ax + b) (cx2 + d)
≡

A

(ax + b)
+

Bx + C

(cx2 + d)

j Repeated Linear factors in the form:

x

(ax + b) (cx + d)3
≡

A

(ax + b)
+

B

(cx + d)
+

C

(cx + d)2
+

D

(cx + d)3

j Improper (top heavy) fractions in the form:

xn + m

axn + bx + d

To solve for the unknown constants, A, B & C etc., we can use one or more of the following four methods: 

j Equating coefficients

j Substitution in the numerator

j Separating the unknown by multiplication and substituting

j Cover up method (only useful for linear factors)

61.2 Type 1: Linear Factors in the Denominator

This the simplest of them all. The denominator factorises into two or more different linear factors of the form
,  etc. Recognise that each of these linear factors is a root of the expression in the denominator.

We set up the partial fractions on the RHS and each root must have its own ‘unknown constant’ assigned to it. 
(ax + b) (cx + d)

     
7x − 8

2x2 − 5x + 2
=

7x − 8

(2x − 1) (x − 2)
=

A

(2x − 1)
+

B

(x − 2)
e.g.

     
8x

(2x − 1) (x − 2) (x + 4)
=

A

(2x − 1)
+

B

(x − 2)
+

C

(x + 4)
e.g.
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61.3 Solving by Equating Coefficients

Taking the first example from above:

61.3.1  Example:

The first task is to factorise the denominator:

 
7x − 8

2x2 − 5x + 2
=

7x − 8

(2x − 1) (x − 2)

Then set up the identity with the correct number of partial fractions:

 
7x − 8

(2x − 1) (x − 2)
≡

A

2x − 1
+

B

x − 2

Add the fractions on the RHS to give:

 
7x − 8

(2x − 1) (x − 2)
≡

A

2x − 1
+

B

x − 2
≡

A (x − 2) + B (2x − 1)
(2x − 1) (x − 2)

∴ 7x − 8 ≡ A (x − 2) + B (2x − 1)

     7x − 8 ≡ Ax − 2A + 2Bx − B

x : 7x = Ax + 2Bx ∴ 7 = A + 2B ⇒  A = 7 − 2BEquate the terms in: 

  : − 8 = −2A − B  ∴ 2A + B = 8Equate the Constants

Substituting or using simultaneous equations:

∴ 2 (7 − 2B) + B = 8

     14 − 4B + B = 8 ⇒  − 3B = − 6

     3B = 6 ∴ B = 2  &  A = 3

∴ 
7x − 8

(2x − 1) (x − 2)
=

3

2x − 1
+

2

x − 2

61.4 Solving by Substitution in the Numerator

Using the same example as above:

61.4.1  Example:

 
7x − 8

(2x − 1) (x − 2)
≡

A

2x − 1
+

B

x − 2
⇒  

A (x − 2) + B (2x − 1)
(2x − 1) (x − 2)

∴ 7x − 8 ≡ A (x − 2) + B (2x − 1)

x = 2 Find B by choosing (to make the A term zero)

 14 − 8 = B (4 − 1)

  3B = 6 ∴ B = 2 

x =
1

2
 Find A by choosing (to make 2nd (B) term zero)

 
7

2
− 8 = A (1

2
− 2)

∴ −
9

2
= −

3

2
A ∴ A = 3

∴ 
7x − 8

(2x − 1) (x − 2)
=

3

2x − 1
+

2

x − 2

514 ALevelNotesv8Erm 07-Apr-2013



61 • C4 •  Partial Fractions

61.5 Solving by Separating an Unknown

A variation on the substitution method which involves multiplying by one of the factors, and then using
substitution. In some cases this can be used if the other two methods don’t work.

61.5.1  Example:

 
4x

x2 − 4
≡

A

x + 2
+

B

x − 2

 (x + 2)Multiply both sides by one of the factors, say

 
4x (x + 2)

x2 − 4
≡

A (x + 2)
x + 2

+
B (x + 2)

x − 2

Cancel common terms:

 
4x

x − 2
≡ A +

B (x + 2)
x − 2

∴      A =
4x

x − 2
−

B (x + 2)
x − 2

Now substitute a value for x such that the B term is zero:

  x = −2 :  A =
− 8
− 4

− 0 = 2If

(x − 2)  Now multiply both sides by one of the other factors, in this case:

 
4x (x − 2)

x2 − 4
≡

A (x − 2)
x + 2

+
B (x − 2)

x − 2

Cancel common terms:

 
4x

x + 2
≡

A (x − 2)
x + 2

+ B

 ∴ B =
4x

x + 2
+

A (x − 2)
x + 2

Now substitute a value for x such that the A term is zero:

  x = 2 :  B =
8

4
= 2If

Hence:

 
4x

x2 − 4
≡

2

x + 2
+

2

x − 2

Test this by substituting a value for x on both sides. Don’t use the values chosen above, as we need to
check it is valid for all values of x.

  x = 1 :  
4

1 − 4
≡

2

1 + 2
+

2

1 − 2
If

     −
4

3
≡

2

3
−

2

1

       ≡
2

3
−

6

3
= − 

4

3
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61.6 Type 2: Squared Terms in the Denominator

This is where we have a squared term in the denominator that cannot be factorised into linear factors. It can be of
the form of  or it may be a traditional quadratic, such as , that cannot be factorised. In
either case we have to take this into account. The general form of the partial fractions are:

(ax2 + b) x2 + bx + c

x

(ax + b) (cx2 + d)
≡

A

(ax + b)
+

Bx + C

(cx2 + d)

Note that the numerator is always one degree less than the denominator.

61.6.1  Example:

1  
4x

(x + 1) (x2 − 3)
≡

A

x + 1
+

Bx + C

x2 − 3
≡

A (x2 − 3) + (Bx + C) (x + 1)
(x + 1) (x2 − 3)

∴  4x ≡ A (x2 − 3) + (Bx + C) (x + 1)

 x = −1To eliminate the  term, let(Bx + C)

∴ − 4 = A (1 − 3) + 0 ∴ A = 2

xEquate the terms in 

 4x ≡ A (x2 − 3) + (Bx + C) (x + 1)

 4x ≡ Ax
2 − 3A + Bx

2 + Bx + Cx + C

 4 = B + C

Equate the constants terms :

 0 = −3A + C

 A = 2But

∴  C = 6

∴   B = 4 − C = 4 − 6 = −2

Hence:

 
4x

(x + 1) (x2 − 3)
=

2

x + 1
+

6 − 2x

x2 − 3

 x = 1Check result by substituting any value for x, except −1 used above. So let 

 
4

(1 + 1) (1 − 3)
=

2

1 + 1
+

6 − 2

1 − 3

 
4

(2) (−2)
=

2

2
+

4

− 2

 − 1 = 1 − 2 = −1

2 A trick question - know your factors (difference of squares)!

4x

x2 − 4
≡

A

x + 2
+

B

x − 2
≡

A (x − 2) + B (x + 2)
(x + 2) (x − 2)

∴ 4x ≡ A (x − 2) + B (x + 2)

 x = 2 :   8 = A (0) + B (4)  B = 2If

 x = −2 :  − 8 = A (− 4) + B (0)  A = 2If

∴ 
4x

x2 − 4
≡

2

x + 2
+

2

x − 2
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61.7 Type 3: Repeated Linear Factors in the Denominator

A factor raised to a power such as  gives rise to repeated factors of . Handling these repeated
factors requires a partial fraction for each power of the factor, up to the highest power of the factor.

(x + 2)3 (x + 2)

Thus, a cubed factor requires three fractions using descending powers of the factor.

e.g.   
x

(x + 2)3
=

A

(x + 2)3
+

B

(x + 2)2
+

C

(x + 2)

Similarly, factors of  would be split into fractions with , , ,  (x + 2)4 (x + 2)4 (x + 2)3 (x + 2)2 (x + 2)

e.g.   
x

(x + 2)4
=

A

(x + 2)4
+

B

(x + 2)3
+

C

(x + 2)2
+

D

(x + 2)

The general rule is that the number of unknowns on the RHS must equal the degree of the denominators
polynomial on the left. In the example below, the degree of the expression in the denominator is four. Hence:

e.g.   
x

(x + 1) (x + 4) (x + 2)2
=

A

(x + 1)
+

B

(x + 4)
+

C

(x + 2)
+

D

(x + 2)2

The reasoning behind the use of different powers of a factor requires an explanation that is really beyond the
scope of these notes. Suffice it to say that anything else does not provide a result that is true for all values of x,
which is what we require. In addition, we need the same number of equations as there are unknowns in order to
find a unique answer.

An alternative way to view this problem, is to treat the problem in the same way as having a squared term in the
denominator. For example:

x

(x + 2)2
=

Ax + B

(x + 2)2

However, the whole point of partial fractions is to simplify the original expression as far as possible, ready for
further work such as differentiation or integration. In the exam, repeated linear factors need to be solved as
discussed above.

61.7.1  Example:

1
 

x

(x + 1) (x + 2)2

 
x

(x + 1) (x + 2)2
≡

A

x + 1
+

B

(x + 2)2
+

C

x + 2

∴   x ≡ A (x + 2)2 + B (x + 1) + C (x + 1) (x + 2)

x = −2      − B = −2 ⇒  B = 2

x = −1      A = −1 ⇒  A = −1

x
2  A + C = 0 ∴ C = 1Look at term:

 
x

(x + 1) (x + 2)2
= − 

1

x + 1
+

2

(x + 2)2
+

1

x + 2
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2 Same problem, but treated as a squared term (interest only).

x

(x + 1) (x + 2)2

x

(x + 1) (x + 2)2
≡

A

x + 1
+

Bx + C

(x + 2)2

∴   x ≡ A (x + 2)2 + (Bx + C) (x + 1)

       x = −1      

 − 1 = A (1)2 + 0 ⇒  A = −1

      x = −2      

 − 2 = 0 + (−2B + C) (−1)

 − 2 = 2B − C

Equate constant terms

  0 = 4A + C ⇒  C = 4

∴  2B = C − 2 ⇒  B = 1

 
x

(x + 1) (x + 2)2
≡ −

1

x + 1
+

x + 4

(x + 2)2

3

 
x2 + 7x + 5

(x + 2)3
≡

A

x + 2
+

B

(x + 2)2
+

C

(x + 2)3

Compare numerators:

 x
2 + 7x + 5 ≡ A (x + 2)2 + B (x + 2) + C

 x = −2 4 − 14 + 5 = C  C = −5Let:

 x2 1 = ACompare coefficients:

 5 = 4A + 2B + CCompare coefficients: constants

         5 = 4 + 2B − 5

        B = 3

∴ 
x2 + 7x + 5

(x + 2)3
≡

1

x + 2
+

3

(x + 2)2
−

5

(x + 2)3
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61.8 Solving by the Cover Up Method

One final method of solving partial fractions, which was first described by the scientist Oliver Heaviside, is the
cover up method. The restriction with this method is that it can only be used on the highest power of any given
linear factor. (This will make more sense after the second example). It makes a convenient way of finding the
constants and is less prone to mistakes.

61.8.1  Example:

1 6x − 8

(x − 1) (x − 2)
≡

A

x − 1
+

B

x − 2

(x − 1)  x = 1To find A, we ‘cover up’ its corresponding factor and then set 

 
6x − 8

(¸¸¸¸) (x − 2)
=

A

(¸¸¸¸)

 
6 − 8

1 − 2
=

−2

−1
= 2 = A

(x − 2)  x = 2Similarly, to find B, we ‘cover up’ its corresponding factor and then set 

 
6x − 8

(x − 1) (¸¸¸¸)
=

B

(¸¸¸¸)

 
12 − 8

2 − 1
=

4

1
= 4 = B

Hence:

 
6x − 8

(x − 1) (x − 2)
≡

2

x − 1
+

4

x − 2

Why does this work? If we did it the long way by multiplying by one factor, say , we get:(x − 1)

 
(6x − 8) (x − 1)
(x − 1) (x − 2)

≡
A (x − 1)

x − 1
+

B (x − 1)
x − 2

Cancelling terms we get:

 
(6x − 8)
(x − 2)

≡ A +
B (x − 1)

x − 2

x = 1 When the B term becomes zero, so we have:

 
(6x − 8)
(x − 2)

≡ A

So the Cover Up Method is just a short cut method for multiplying out by one of the factors.
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2 The cover up method can be used on the linear parts of other more complex partial fractions.

This speeds up the process, and simplifies the subsequent calculations.

For example, in the problem earlier, we had this to solve:

 
4x

(x + 1) (x2 − 3)
≡

A

x + 1
+

Bx + C

x2 − 3

(x + 1)  x = −1To find A: cover up and set 

 
4x

(¸¸¸¸) (x2 − 3)
≡

A

(¸¸¸¸)

 
−4

(1 − 3)
≡ A

  
−4

−2
≡ A  ∴ A = 2

The other constants can now be found using the other methods.

3 The cover up method can also be used to partly solve problems with repeated linear factors. The
proviso is that only the highest power of the repeated factor can be covered up.

6

(x + 2) (x − 1)2
≡

A

x + 2
+

B

(x − 1)2
+

C

x − 1

(x + 2)  x = −2To find A: cover up and set 

 
6

(¸¸¸¸) (x − 1)2
≡

A

(¸¸¸¸)

 
6

(−2 − 1)2
≡ A

 
6

9
≡ A  ∴ A =

2

3

(x − 1)2  x = 1To find B: cover up and set 

 
6

(x + 2) (¸¸¸¸)
≡

B

(¸¸¸¸)

 
6

3
≡ B  ∴ B = 2

 

The cover up method cannot be used to find C, so one of the other methods is required.

 x = 0To find C set 

 
6

(x + 2) (x − 1)2
≡

2

3 (x + 2)
+

2

(x − 1)2
+

C

x − 1

 
6

(2) (−1)2
≡

2

3 (2)
+

2

(−1)2
+

C

−1

 
6

2
=

2

6
+

2

1
−

C

1

 3 =
1

3
+ 2 − C

 C = −
2

3

 
6

(x + 2) (x − 1)2
=

2

3 (x + 2)
+

2

(x − 1)2
−

2

3 (x − 1)
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61.9 Partial Fractions Worked Examples

61.9.1  Example:

1 16

x3 − 4x
≡

A

x
+

B

x + 2
+

C

x − 2

 
16

x3 − 4x
=

16

x (x2 − 4) =
16

x (x + 2) (x − 2)
But

∴      
16

x (x + 2) (x − 2)
≡

A (x − 2) (x + 2) + Bx (x − 2) + Cx (x + 2)
x (x + 2) (x − 2)

        16 = A (x − 2) (x + 2) + Bx (x − 2) + Cx (x + 2)

 x = 0    16 = A (−2) (2) = − 4A      A = − 4Let

 x = −2 16 = B (−2) (− 4) = + 8B    B = 2Let

 x = 2    16 = C (2) (4) = 8C   C = 2Let

∴ 
16

x3 − 4x
= − 

4

x
+

2

x + 2
+

2

x − 2

2 13x − 6

x (3x − 2)
.Express     as partial fractions

 
13x − 6

x (3x − 2)
=

A

x
+

B

3x − 2
 ⇒  

A (3x − 2) + B (x)
x (3x − 1)

∴  13x − 6 ≡ A (3x − 2) + B (x)

xChoose values of 

 x = 0 ∴ − 6 = −2A  ⇒ A = 3

 x =
2

3
 ∴ 

26

3
− 6 =

2

3
B     ⇒ B = 4

Ans :  =
3

x
+

4

3x − 2

3 12x

(x + 1) (2x + 3) (x − 3)
=

A

x + 1
+

B

2x + 3
+

C

x − 3

           =
A (2x + 3) (x − 3) + B (x + 1) (x − 3) + C (x + 1) (2x + 3)

(x + 1) (2x + 3) (x − 3)

∴ 12x ≡ A (2x + 3) (x − 3) + B (x + 1) (x − 3) + C (x + 1) (2x + 3)

xChoose values of 

x = 3    ∴ 36 = C (3 + 1) (2 × 3 + 3)   ⇒ 36C = 36    ⇒  C = 1

x = −1 ∴ − 12 = A (−2 + 3) (−1 − 3)        ⇒ − 4A = −12 ⇒  A = 3

x = −
3

2
 ∴ − 12 ×

3

2
= B (−3

2
+ 1) (−3

2
− 3)    ⇒  

9

4
B = −18  ⇒  B = − 8

Ans :  =
3

x + 1
−

8

2x + 3
+

1

x − 3
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61.10 Improper (Top Heavy) Fractions

An algebraic fraction is top heavy if the highest power of x in the numerator is greater to or equal to the highest
power in the denominator. The examples below illustrate two methods of finding the unknowns. You can of
course do a long division to find the whole number and remainder. Then work the partial fractions on the
remainder.

61.10.1  Example:

1  
x2

(x − 1) (x + 2)

     ≡ A +
B

x − 1
+

C

x + 2

Note: A in not divided by another term because the fraction is a top heavy one and dividing out a
top heavy fraction will give a whole number plus a remainder.

   x
2 ≡ A (x − 1) (x + 2) + B (x + 2) + C (x − 1)

x = 1  1 = 3B ⇒  B =
1

3

x = −2       4 = −3C     ⇒  C = − 
4

3

A = 1 ( x
2)coefficient of 

∴ 
x2

(x − 1) (x + 2)
= 1 +

1

3 (x − 1)
−

4

3 (x + 2)

2 3x2 + 6x + 2

(2x + 3) (x + 2)2
  ←  e.g. this is NOT top heavy

   ≡
A

2x + 3
+

B

(x + 2)2
+

C

x + 2

∴ 3x
2 + 6x + 2 ≡ A (x + 2)2 + B (2x + 3) + C (2x + 3) (x + 2)

x = −2      2 = − B ⇒  B = −2

etc…

3 3x2 + 6x + 2

(2x + 3) (x + 2)
  ←  e.g. this IS top heavy

   ≡ A +
B

2x + 3
+

C

x + 2

∴ 3x
2 + 6x + 2 ≡  A (2x + 3) (x + 2) + B (x + 2) + C (2x + 3)

x = −2      2 = − C

etc…
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4 Here is an alternative method, which splits the numerator into parts that can be divided exactly by
the denominator, giving the whole number part immediately.

  
x2 + 3x − 11

(x + 2) (x − 3)
=

x2 + 3x − 11

x2 − x − 6

          =
x2 − x − 6 + 4x − 5

x2 − x − 6

  
x2 + 3x − 11

(x + 2) (x − 3)
=

x2 − x − 6

x2 − x − 6
+

4x − 5

x2 − x − 6

         = 1 +
4x − 5

x2 − x − 6

         = 1 +
A

x + 2
+

B

x − 3

The partial fraction required is based on the remainder and is now:

  
4x − 5

x2 − x − 6
=

A

x + 2
+

B

x − 3

which can be solved in the normal manner.
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61.11 Using Partial Fractions

Some examples of using partial fractions for differentiation and integration. Partial fractions can also be used for
series expansions. 

61.11.1  Example:

1 Differentiate the following function: f (x) =
x + 9

2x2 + x − 6

 f (x) =
x + 9

(2x − 3) (x + 2)
=

A

(2x − 3)
+

B

(x + 2)

 x + 9 = A (x + 2) + B (2x − 3)

x = −2 :  7 = −7B B = −1Let 

x =
3

2
:  

3

2
+ 9 = A (3

2
+ 2) ⇒ 3 + 18 = A (3 + 4)  A = 3Let 

∴ f (x) =
3

(2x − 3)
−

1

(x + 2)

 y = [f (x)]n
 ⇒  

dy

dx
= n f ′ (x) [f (x)]n − 1

Recall: If

 f (x) = 3 (2x − 3)−1
− (x + 2)−1

 f ′ (x) = 3 (−1) 2 (2x − 3)−2
− (−1) (x + 2)−2

   = − 6 (2x − 3)−2 + (x + 2)−2

 f ′ (x) =
1

(x + 2)2
−

6

(2x − 3)2

We could have used the quotient rule, but this method is sometimes easier.

61.12 Topical Tips

j The number of unknown constants on the RHS should equal the degree of the polynomial in the
denominator:
e.g.

x2 + 7x + 5

(x + 2)3
≡

A

x + 2
+

B

(x + 2)2
+

C

(x + 2)3

j The denominator on the LHS is a degree 3 polynomial, so the number of constants on the RHS = 3

j A rational function is one in which both numerator and denominator are both polynomials.
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62.1 Using Partial Fractions in Integration

The ideal format for integrating a fraction is :

  ∫
1

ax + b
dx =

1

a
= ln | ax + b | + c

Partial fractions gives us the tool to tackle fractions that are not in this ideal form.

62.2 Worked Examples in Integrating Partial Fractions

62.2.1  Example:

1  ∫
1

(x2 − 1)
dxFind

1

(x2 − 1)
=

A

(x + 1)
+

B

(x − 1)
=

A (x − 1) + B (x + 1)
(x + 1) (x − 1)

∴ 1 = A (x − 1) + B (x + 1)

x = 1   ⇒  1 = 2B    ∴ B =
1

2
Let 

x = −1 ⇒  1 = −2A ∴ A = −
1

2
Let 

∫
1

(x2 − 1)
 dx = ∫

1

2 (x − 1)
−

1

2 (x + 1)
 dx

   =
1

2 ∫
1

(x − 1)
 dx −

1

2 ∫
1

(x + 1)
 dx

   =
1

2
ln | x − 1 | −

1

2
ln | x + 1 | + c

   =
1

2
ln 

| x − 1 |
| x + 1 | + c

2  ∫
5 (x + 1)

(x − 1) (x + 4)
 dxFind

5 (x + 1)
(x − 1) (x + 4)

=
A

(x − 1)
+

B

(x + 4)
=

A (x + 4) + B (x − 1)
(x − 1) (x + 4)

∴ 5 (x + 1) = A (x + 4) + B (x − 1)

x = −4 ⇒  − 15 = − 5B         ∴ B = 3Let 

x = 1   ⇒  10 = 5A      ∴ A = 2Let 

∫
5 (x + 1)

(x − 1) (x + 4)
 dx = ∫

2

(x − 1)
 dx + ∫

3

(x + 4)
 dx

         = 2 ∫
1

(x − 1)
+ 3 ∫

1

(x + 4)
 dx

        = 2 ln | x − 1 | + 3 ln | x + 4 | + c
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3
 ∫

 4

1

1

x (x − 5)
dxCalculate the value of

 
1

x (x − 5)
≡

A

x
+

B

x − 5
=

A (x − 5) + B (x)
x (x − 5)

∴  1 ≡ A (x − 5) + Bx

x = 5        5B = 1 ⇒  B =
1

5
Let 

x = 0 − 5A = 1 ⇒  A = −
1

5
Let 

∴ 
1

x (x − 5)
= − 

1

5x
+

1

5 (x − 5)

∫
 4

1

1

x (x − 5)
dx =

1

5 ∫
 4

1
(− 

1

x ) +
1

(x − 5)
 dx

   =
1

5
 [− ln | x | + ln | x − 5 | ]  4

 1

   =
1

5
[(− ln | 4 | + ln | 4 − 5 | ) − (− ln | 1 | + ln | 1 − 5 | ) ]

   =
1

5
(− ln | 4 | + ln | 1 |  ) + ln | 1 | − ln | 4 |    (  ln 1 = 0)but:

   =
1

5
(− 2 ln 4) = − 

2

5
 ln 4 =

2

5
 ln ( 14) =

1

5
 ln ( 1

16)
4

 ∫
 ∞

0

1

(x + 1) (2x + 3)
dxCalculate the value of

1

(x + 1) (2x + 3)
≡

A

(x + 1)
+

B

(2x + 3)
≡

A (2x + 3) + B (x + 1)
(x + 1) (2x + 3)

∴ 1 ≡ A (2x + 3) + B (x + 1)

x = − 
3

2
        −

1

2
B = 1 ⇒  B = −2

x = −1 − 2A + 3 = 1 ⇒  A = 1

∴         =
1

(x + 1)
−

2

(2x + 3)

∫
 ∞

0

1

(x + 1) (2x + 3)
dx = ∫

 ∞

0

1

(x + 1)
−

2

(2x + 3)
dx

     = ln (x + 1) −
2

2
 ln (2x + 3)0

∞

     = 

ln ( x + 1

2x + 3) 0

∞

= 

ln ( x

2x + 3
+

1

2x + 3)
 ∞

 0



ln ( x + 1

2x + 3) 0

∞

=  ln (1

3)Substitute 0 into this bit...  

∞ = 

ln ( 1

2 + 3
x

+
1

2x + 3) 0

∞

= ln (1

2)Rearrange & substitute into this bit...

∴     = ln (1

2) − ln (1

3)  = ln (3

2)
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63.1 The General Binomial Theorem

In C2, the Binomial Theorem was used to expand  for any +ve integer of n, and which gave a finite
series that terminated after  terms. This was given as:

(a + b)n

n + 1

(a + b)n = n
C0 a

n + n
C1 an − 1

b + n
C2 an − 2

b
2 + n

C3 a
n − 3

b
3 +… + n

Cn − 1 ab
n − 1 + n

Cn b
n

The coefficient of each of the above terms can be found using a calculators  button, however, this is only
valid when n and r are positive integers.

nCr

n
Cr =

n!

(n − r)! r!
So the formula   cannot be used for fractional or negative values of n and r.

Because the expansion is finite, the RHS exactly equals the LHS of the equation. Plotting both sides of the
equation as separate functions would give identical graphs.

Now we want to be able to use the Binomial Theorem, for any rational value of n.

In fact, restricting n to +ve integers is a just a special case of the general Binomial Theorem, in which n can take
any rational value (which of course includes fractional and −ve values of n).

Rearranging the binomial  into the form ; the general Binomial Theorem now becomes:(a + b)n (1 + x)n

(1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +
n (n − 1) (n − 2) (n − 3)

4!
x

4 +  …

   +  …
n (n − 1) … (n − r + 1)

r!
x

r +  …

The big change here, is that the expansion has an infinite number of terms, (except for the special case
mentioned above) and the RHS is now only an approximation of the function on the LHS (unless you can
calculate all the infinite terms:-).

We must also determine if the expansion diverges or converges towards the value of the LHS.

63.2 Recall the Sum to Infinity of a Geometric Progression

Recall from C2, that the sum of a Geometric Progression (GP) is given by:

Sn = a + ar + ar
2 +… + ar

n − 2 + ar
n − 1

The sum to infinity, , only has a meaning if the GP is a convergent series, (the sum to infinity of a divergent
series is undefined).

S∞

The general formula for the sum of a GP is:

Sn =
a (1 − rn)
(1 − r)

However, if r is small i.e.  , then the term  tends to 0 as −1 < r < 1 rn n → ∞

Mathematically this is written:

| r | < 1,   lim
n → ∞

r
n = 0if then

and the sum to infinity becomes:

S∞ =
a

(1 − r)
  | r | < 1

The GP is said to converge to the sum S∞
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63.3 Convergence and Validity of a Binomial Series

From our general binomial expansion:

(1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +  … +  
n (n − 1) … (n − r + 1)

r!
x

r +  …

we can see the similarities to the Geometric Progression (GP) in the section above. 

For a binomial expansion, the sum of all the terms to infinity only has a meaning if the binomial converges. 

Thus: when , and if  then the series will converge to the value of .r → ∞ x
r → 0 (1 + x )n

From the above equation, one can see that a binomial will converge only when .| x | < 1

We say the expansion is valid for  . Valid just means convergence in this instance.| x | < 1

In the formula above, the role of x is a generic one. We can replace x with any variation of the term, so, for
example, the binomial  is only valid for .(1 + bx)n | bx | < 1

[Note: do not confuse the choice of variable letters used here with those used for a GP]

Another way of looking at the validity of the expansion is to plot the LHS and RHS of the equation as two
separate functions.

The two graphs will only have a close match when  .| x | < 1

The example below shows how the expansion of  compares when plotted on a graph.(1 + x)−1

(1 + x)−1 = 1 − x + x
2 − x

3 + x
4 +  …

The RHS matches the LHS most closely between the valid values of −1 < x < 1 (i.e. | x | < 1)

The best approximation is when x is small and close to 0. In this region the expansion converges quickly, with
fewer terms required. When x is closer to , but still in the valid range, the convergence is slow, and many more
terms are required.

±1

Note the difference between the expansion to 5 terms and the one to 8 terms.

4

x

y

−3 −2 −1 1 2O

y = 1 − x + x2 − x3 + x4

y = 1 − x + x2 − x3 + x4 − x5 + x6 − x7

y = (1 − x)−1

5 terms

8 terms

Binomial Expansions Compared
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63.4 Handling Binomial Expansions

It is all too easy to get these expansions wrong, especially if a minus sign is involved.

Thus, for an expansion to the 5th term:

(1 − x)n ≈ 1 + n (−x) +
n (n − 1)

2!
(−x)2 +

n (n − 1) (n − 2)
3!

(−x)3 +
n (n − 1) (n − 2) (n − 3)

4!
(−x)4

In this case we get alternating signs for each term:

(1 − x)n ≈ 1 − nx +
n (n − 1)

2!
x

2 −
n (n − 1) (n − 2)

3!
x

3 +
n (n − 1) (n − 2) (n − 3)

4!
x

4

Note that the signs will change again if n is −ve.

Some confusion can also be caused by the way the general theorem is stated with x as the variable and then being
asked to evaluate something like . (1 − 3x)n

The x term can take any coefficient b, which is also raised to the same power as the x term, thus:

(1 − bx)n = 1 + n (−bx) +
n (n − 1)

2!
(−bx)2 +

n (n − 1) (n − 2)
3!

(−bx)3 +  …

Stating the theorem with u as the variable, or even using a symbol may help in your understanding:

(1 + u)n = 1 + nu +
n (n − 1)

2!
u

2 +
n (n − 1) (n − 2)

3!
u

3 +
n (n − 1) (n − 2) (n − 3)

4!
u

4 +  …

(1 + �)n = 1 + n� +
n (n − 1)

2!
�2 +

n (n − 1) (n − 2)
3!

�3 +
n (n − 1) (n − 2) (n − 3)

4!
�4 +  …

Evaluating  becomes more obvious as u or  is replaced everywhere with 3x.(1 − 3x)n �

In evaluating the coefficients, note the pattern that they form. Each succeeding value in the bracket is one less
that the previous. 

E.g. Assuming a value of , instead of writing down the 4th
coefficients as: 

n = −2

  
−2 (−2 − 1) (−2 − 2)

3!

write:

   
−2 (−3) (−4)

3!

Once you see the pattern it is very easy to write down the next
coefficients in turn. E.g:

   
−2 (−3) (−4) (−5)

4!
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63.4.2  Example:

1 1

(1 + x)2
 x

3Expand up to the term in 

 Solution:

(1 + x)−2 = 1 + (−2x) +
−2 (−2 − 1)

2!
x

2 +
−2 (−3) (−4)

3!
x

3 …

(1 + x)−2 = 1 + (−2x) +
−2 (−3)

2!
x

2 +
−2 (−3) (−4)

3!
x

3 …

(1 + x)−2 = 1 − 2x +
−2⁄ (−3)

2⁄ !
x

2 +
(2⁄ × 3⁄ ) (−4)

3⁄ !
x

3 …

(1 + x)−2 = 1 − 2x + 3x
2 − 4x

3 …   

| x | < 1Valid for 

2 (1 + 3x)
3
2  x

3Expand up to the term in 

n  3
2 x’s 3xReplace with and replace all with 

 Solution:

(1 + 3x)
3
2 = 1 +

3

2
(3x) +

3
2 (1

2)
2!

 (3x)2 +
3
2 (1

2) (−1
2)

3!
 (3x)3 …

(1 + 3x)
3
2 = 1 +

9

2
 x +

3
4

2!
 9x

2 +
−3

8

3!
 27x

3…

(1 + 3x)
3
2 = 1 +

9

2
 x +

27

8
 x2 −

27

16
 x 3…   

| 3x | < 1 or | x | <
1

3
Valid for 

3 5 + x

1 − 2x
 x

3Expand in ascending powers of x up to the term in 

 Solution:
5 + x

1 − 2x
= (5 + x) (1 − 2x)−1

(1 − 2x)−1 = 1 − 1 (−2x) +
−1 (−2)

2!
(−2x)2 +

−1 (−2) (−3)
3!

(−2x)3 …Expand: 

        = 1 + 2x + 4x
2 + 8x

3…

∴ (5 + x) (1 − 2x)−1 = (5 + x) (1 + 2x + 4x
2 + 8x

3)

          = 5 + 10x + 20x
2 + 40x

3 + x + 2x
2 + 4x

3 + 8x
4

          = 5 + 11x + 22x
2 + 44x

3 + 8x
4

Ans :     = 5 + 11x + 22x
2 + 44x

3

| 2x | < 1 or | x | <
1

2
Valid for 
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63.5 Using Binomial Expansions for Approximations

When  then the series will be a good approximation of . −1 < x < 1 (i.e. | x | < 1) (1 + x)n

For  then the series is valid (or convergent) when .(1 + bx)n | bx | < 1 | x | <
1

b
or 

63.5.1  Example:

1 Expand  in ascending powers of x up to and including the term in  and hence by
choosing values for x, find an approximation for .

(1 − 2x) x3

2

 Solution:

(1 − 2x)
1
2 = 1 +

1

2
(−2x) +

1
2 (−1

2)
2!

(−2x)2 +
1
2 (−1

2) (−3
2)

3!
(−2x)3

(1 − 2x)
1
2 = 1 − x −

1

2
 x2 −

1

2
 x3 +  …

2 (1 − 2x) = 2 ∴ x = −
1

2
To find  let 

∴ 2
1
2 ≅ 1 +

1

2
−

1

2 (−1

2)
2

−
1

2 (−1

2)
3

 ≅ 1 +
1

2
−

1

2
×

1

4
−

1

2
× (−1

8)
 ≅ 1 +

1

2
−

1

8
+

1

16
−  …

 ≅
23

16
≅ 1·4375 ( 2 = 1·41421 )by calculator

| 2x | < 1 or | x | <
1

2
Valid for 

2 Using the above expansion find the approximate value of  by substituting 21 x = 0.08

Substituting & using the rules for surds:

 Solution:

(1 − 2x) = 1 − 2 × 0·08 = 0·84

     =
84

100
=

4 × 21

100
=

2

10
21

∴ 
2

10
21 ≅ 1 − 0·08 −

1

2
 (0·08)2

−
1

2
(0·08)3 +  …

   ≅ 0·9165

∴     21 ≅
0·9165 × 10

2

  21 ≅ 4·5827 (5 sf )

  21 = 4·58257 (by calculator)

| 2x | < 1 or | x | <
1

2
Valid for 
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63.6 Expanding (a + bx)n

This requires you to change the format from  to  by taking out the factor . Thus:(a + bx)n (1 + kx)n an

(a + bx)n = a (1 +
bx

a )
n

= a
n (1 +

bx

a )
n

       = a
n 


1 + n

b

a
x +

n (n − 1)
2! (b

a
x)

2

+
n (n − 1) (n − 2)

3! (b

a
x)

3

+
n (n − 1) (n − 2) (n − 3)

4! (b

a
x)

4



| bax | < 1 | x | <
a

b
Valid for or 

63.6.1  Example:

1 Expand   up to and including the term in .(4 − 3x2) x4

 Solution:

(4 − 3x2) = (4 − 3x
2)

1
2 ⇒ 4 (1 −

3

4
x

2)
1
2

⇒ 4
1
2 (1 −

3

4
x

2)
1
2

⇒ 2 (1 −
3

4
x

2)
1
2

(1 −
3

4
x

2)
1
2

= 1 +
1

2 (−3

4
x

2) +
1
2 (−1

2)
2! (−3

4
x

2)
2

+  …Now: 

∴ 2 (1 −
3

4
x

2)
1
2

= 2 1 −
3

8
x

2 −
1

8 ( 9

16
x

4)
       = 2 1 −

3

8
x

2 −
9

128
x

4

       = 2 −
3

4
x

2 −
9

64
x

4

| 34x
2 | < 1  or | x | <

4

3
From (1 − 3

4x2)  expansion valid for 

2 4 − x

(2 + x)2
 x

3Expand up to and including the term in 

 Solution:

4 − x

(2 + x)2
= (4 − x) (2 + x)−2 = (4 − x)  . 2−2. (1 +

1

2
x)

−2

  =
1

4
(4 − x) (1 − x +

3

4
x

2 −
1

2
x

3 +… )
  =

1

4 (4 − 4x + 3x
2 − 2x

3 − x + x
2 −

3

4
x

3 +… )
  =

1

4 (4 − 3x + 4x
2 −

11

4
x

3 +… )
  = 1 −

3

4
x + x

2 −
11

16
x

3

| 12x | < 1  or | x | < 2From (1 + 1
2x)  expansion valid for 
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63.7 Simplifying with Partial Fractions

63.7.1  Example:

1 1

(1 + x) (1 − 2x)
 x

3Use partial fractions to expand in ascending powers of x up to the term in 

Solution:
1

(1 + x) (1 − 2x)
≡

A

(1 + x)
+

B

(1 − 2x)

    ≡
A (1 − 2x)

(1 + x)
+

B (1 + x)
(1 − 2x)

∴     1 ≡ A (1 − 2x) + B (1 + x)

x =
1

2
   1 = A × (0) + 1

1

2
BLet 

         1 =
3

2
B  ⇒  B =

2

3

x = −1 1 = A × (1 + 2) + B × (0)Let 

         1 = 3A  ⇒  A =
1

3

∴ 
1

(1 + x) (1 − 2x)
≡

1

3 (1 + x)
+

2

3 (1 − 2x)

Expand each term separately then add together:

1

3 (1 + x)
=

1

3
(1 + x)−1 =

1

3
1 + (−1) x +

(−1) (−1 − 1)
2!

x
2 +

(−1) (−1 − 1) (−12)
3!

x
3

  =
1

3
1 − x +

(2)
2!

x
2 +

(−1) (−2) (−3)
3!

x
3 … 

  =
1

3
[1 − x + x

2 − x
3 … ]   =

1

3
−

x

3
+

x2

3
−

x3

3
 …

2

3 (1 − 2x)
=

2

3
(1 − 2x)−1

 

  =
2

3
1 + (−1) (−2x) +

(−1) (−1 − 1)
2!

(−2x)2 +
(−1) (−1 − 1) (−1 − 2)

3!
(−2x)3

  =
2

3
[1 + 2x + 4x

2 + 8x
3 … ]  =

2

3
+

4x

3
+

8x2

3
+

16x3

3
 …

Now combine the expansions:

∴ 
1

(1 + x) (1 − 2x)
= 


1

3
−

x

3
+

x2

3
−

x3

3


 + 


2

3
+

4x

3
+

8x2

3
+

16x3

3


  …

  = 1 + x + 3x
2 + 5x

3 …

2

3
(1 − 2x)−1  |−2x | < 1 | x | <

1

2
Note that is valid when or when 

1

3
(1 + x)−1  | x | < 1Note that is valid when 

| x | <
1

2
∴ combined expansion is valid when 
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63.8 Binomial Theorem Digest:

(1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +
n (n − 1) (n − 2) (n − 3)

4!
x

4 +  …

   +  …
n (n − 1) … (n − r + 1)

r!
x

r +  …     | x | < 1Valid for 

(a + bx)n = a (1 +
bx

a )
n

= a
n (1 +

bx

a )
n

 = a
n 


1 + n

b

a
x +

n (n − 1)
2! (b

a
x)

2

+
n (n − 1) (n − 2)

3! (b

a
x)

3

+
n (n − 1) (n − 2) (n − 3)

4! (b

a
x)

4



| bax | < 1 | x | <
a

b
Valid for or 

j For the general Binomial Theorem any rational value of n can be used (i.e. fractional or negative
values, and not just positive integers).

j For these expansions, the binomial must start with a 1 in the brackets. For binomials of the form
, the a term must be factored out. 

Therefore, the binomial  must be changed to  . 

(a + bx)n

(a + bx)n a
n (1 +

b

a
x)

n

j When n is a positive integer the series is finite and gives an exact value of  and is valid for all
values of x. The expansion terminates after  terms, because coefficients after this term are zero.

(1 + x)n

n + 1

j When n is either a fractional and/or a negative value, the series will have an infinite number of terms.
and the coefficients are never zero.

j In these cases the series will either diverge and the value will become infinite or they will
converge, with the value converging towards the value of binomial .(1 + x)n

j The general Binomial Theorem will converge when . This is the
condition required for convergence and we say that the series is valid for this condition.

| x | < 1 (i. e. − 1 < x < 1)

j For binomials of the form , the series is only valid when , ora
n (1 +

b

a
x)

n

| bax | < 1

| x | <
a

b

j The range must always be stated.

j When the series is convergent it will make a good approximation of  depending on the

number of terms used, and the size of x. Small is better.

(1 + x)n

    (1 + x)−1 = 1 − x + x
2 − x

3 + x
4 +…

    (1 − x)−1 = 1 + x + x
2 + x

3 + x
4 +…

    (1 + x)−2 = 1 − 2x + 3x
2 − 4x

3 + 5x
4 +…

    (1 − x)−2 = 1 + 2x + 3x
2 + 4x

3 + 5x
4 +…

| x | < 1All valid for 
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64.1 Intro to Parametric Equations

Some relationships between the variables x and y are so complicated that it is often convenient to express x and y
in terms of a third variable called a parameter.

E.g. x = t4   (1)
y = t3 − t  (2)

The equations (1) & (2) are called the parametric equations of the curve. By eliminating t from both equations
it is possible to find a direct relationship between x and y, which is of course the Cartesian equation of the

curve. (In this example we obtain , a very tricky equation to deal with, which nicely illustrates the
reason for using parametric equations).

y = x
3
4 − x

1
4

64.1.2  Example:

1 If  sketch a graph to see how the curve is represented.y = t3,  &  x = 2t3 + 2

Solution:

t = −2 x = −14 y = −8

t = −1 x = 0 y = −1

t = 0 x = 2 y = 0

t = 1 x = 4 y = 1

t = 2 x = 18 y = 8

t = 3 x = 56 y = 27

6050403020100-10-20

-10

-5

0

5

10

15

20

25

30

2 Sketch the curve for x = t3 − 4t   &   y = t2 − 1

Solution:

t    x      y   

−3 −15 8

−2 0 3

−1 3 0

0 0 −1

1 −3 0

2 0 3

3 15 8

151050-5-10-15

-1

0

1

2

3

4

5

6

7

8
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64.2 Converting Parametric to Cartesian format

To convert to Cartesian equations:

j Rearrange the x-equation to get t on its own

j Substitute this into the y-equation.

j or visa versa! Choose the simpler of the two equations to find t = ?

64.2.1  Example:

1 Express the parametric equation   in cartesian form and sketch the curve.x = t − 2  & y = t2 − 1

Solution:

x = t − 2 ∴ t = x + 2

y = t
2 − 1 ∴ y = (x + 2)2

− 1

   x      y   

−6 15

−4 3

−2 −1
0 3

2 15

4 35
420-2-4-6

-5

0

5

10

15

20

2 Sketch the curve of the parametric equation x = t + 1  & y = 1
t

Solution:

x = t + 1 ∴ t = x − 1

y =
1

t
  ∴ y =

1

x − 1

   x      y   

−9 −0·1

−4 −0·2

−1 −0·5

−0·5 −0·666

0 −1

0·5 −2

1 ∞
1·5 2

2 1
4 0·333

11 0·2

121086420-2-4-6-8-10

-2

-1

0

1

2

3

4

5

6

3
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Express the parametric equation  in cartesian form.x =
1

1 + t
  & y = t

2 + 4

Solution:

x =
1

1 + t

1 + t =
1

x

t =
1

x
− 1

∴ y = (1

x
− 1)

2

+ 4

y =
1

x2
−

2

x
+ 1 + 4

y =
1

x2
−

2

x
+ 5

4
Show that the parametric equation   can be given in the cartesian

form as: 

x = at +
1

tn
   y = at −

1

tn
and

(x − y) (x + y)n = 2
n + 1

a
n

Solution:
Substitute for x & y in the LHS of the above equation:


(at +

1

tn) − (at −
1

tn)  

at +

1

tn
+ at −

1

tn




n

⇒

( 2

tn) × (2at)n ⇒  

2

tn
× 2

n
a

n
t
n = 2

n + 1
a

n

64.3 Sketching a Curve from a Parametric Equation

64.3.1  Example:

1 Sketch the curve x = 1 − t,  y = t2 − 4

Solution:
y-axis is cut at: x = 0 ∴ 1 − t = 0 ⇒  t = 1 ∴ y = −3

Co-ordinate of y-axis cut at (0, −3)

x-axis is cut at: ,y = 0 ∴ t2 − 4 = 0 ⇒  t2 = 4 t = ±2 ∴ x = −1,  3
Co-ordinate of x-axis cut at (−1, 0) and (3, 0)

Since  is never −ve, the minimum value of y is −4
For all values of  there are 2 values of x in the form of .
Hence curve is symmetrical about the line .

31-1

-4

0

5

10

-3

t2

y > −4 1 ± k
x = −1
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64.4 Parametric Equation of a Circle

Circle centre (0, 0) radius r:

x = rcos θ y = rsin θ

Circle centre (a, b) radius r:

x = a + rcos θ y = b + rsin θ
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64.5 Differentiation of Parametric Equations

Two methods can be used:

j Eliminate the parameter and differentiate normally or

j Use the chain rule:

     
dy

dx
=

dy

dt
×

dt

dx
  

dt

dx
=

1
dx
dt

and

64.5.1  Example:

1 Find the gradient of the curve  at the point where x = t2,  y = 2t t = 3

Solution: Method 1

t = x ∴ y = 2 x = 2x
1
2

dy

dx
= x

−1
2 =

1

x

t = 3,  x = 3
2 = 9When 

dy

dx
=

1

9
=

1

3
Gradient 

Method 2

x = t
2 ∴ 

dx

dt
= 2t

y = 2t ∴ 
dy

dt
= 2

    
dy

dx
=

dy

dt
×

dt

dx

    
dy

dx
= 2 ×

1

2t
=

1

t

t = 3,  
dy

dx
=

1

t
=

1

3
When 

2 Find the equation of the normal at the point (−8, 4) to the curve given parametrically by:

x = t
3,  y = t

2

Solution:

t = x
1
3 ⇒  y = x

2
3

∴ 
dy

dx
=

2

3
x

−1
3

=
2

3
(−8)−1

3 =
2

3
.

1

(−2)
= −

1

3
Gradient:

   m1m2 = −1 ∴ = 3Gradient of normal given by:  Gradient

 y − y1 = m (x − x1)Equation of line given by

    ⇒  y − 4 = 3 (x + 8)

    ⇒  y = 3x + 28
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3 Find the turning points on the curve given by  x = t,  y = t3 − 3t

Solution:
dx

dt
= 1,  

dt

dx
= 1

dy

dt
= 3t

2 − 3

dy

dx
=

dy

dt
×

dt

dx
 ⇒  

dy

dx
= (3t

2 − 3) × 1 = 3t
2 − 3

 
dy

dx
= 0At the turning points

3t
2 − 3 = 0

3t
2 = 3

t
2 = 1

t = 1 = ±1

From start equations:

t = 1 ⇒ x = 1 & y = −2When 

t = −1 ⇒ x = −1 & y = 2When 

(1, −2) ,  (−1,  2)Co-ordinates of turning points are 

x = −11
2 −1 0 0 1 2

t = −11
2 −1 0 0 1 2

Sign dy
dx + 0 − −  0 +

Shape ⁄  \ \  ⁄

∴ (−1,  2)   (1, −2)  is a max is a min

4 Find the equation of the general tangent to the curve given by  x = t,  y =
1

t

Solution:
dx

dt
= 1,  

dt

dx
= 1

y =
1

t
= t

−1 ⇒  
dy

dt
= −t

−2 = −
1

t2

dy

dx
=

dy

dt
×

dt

dx
 ⇒  

dy

dx
= −

1

t2
× 1 = −

1

t2

(t,  
1

t )  −
1

t2
Need a general equation, so use point with a gradient of 

∴ y − y1 = m (x − x1)

        y −
1

t
= −

1

t2
 (x − t)

× by t2  t
2
y − t = −x + t

       t2
y − t = −x + t

       t2
y + x − 2t = 0
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5 Find the equation of the normal to the curve given by  x = t2,  y = t + 1
t

Solution:

x = t
2 ⇒  

dx

dt
= 2t,  

dt

dx
=

1

2t

y = t +
1

t
= t + t

−1 ⇒  
dy

dt
= 1 − t

−2 = 1 −
1

t2

dy

dx
=

dy

dt
×

dt

dx
 ⇒  

dy

dx
= (1 −

1

t2) 1

2t

           = ( t2 − 1

t2 ) 1

2t

           =
t2 − 1

2t3

t = 2 
dy

dx
=

22 − 1

2 × 23
=

4 − 1

16
=

3

16
When 

t = 2 x = 2
2 = 4,  y = 2 +

1

2
=

5

2
When 

(4,  
5

2)So we want equation of normal through point

=
3

16
  ∴ = −

16

3
Gradient of tangent Gradient of normal 

 y − y1 = m (x − x1)Equation of normal is:

      y −
5

2
= −

16

3
(x − 4)

      y −
5

2
= −

16x

3
+

64

3

× 6     6y − 15 = −32x + 128

    6y + 32x − 143 = 0

6 x = t
2 − 3t &  y = 4t

3 − 3t
2 − 18t + 5If 

dy

dx
 t = 2Find  when 

Solution:
dx

dt
= 2t − 3,  

dy

dt
= 12t

2 − 6t − 18

dy

dx
=

dy

dt
×

dt

dx
 ⇒  

dy

dx
=

12t2 − 6t − 18

2t − 3

Ans :  =
48 − 12 − 18

4 − 3
= 18
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7 Take the parametric curve defined by  with two points with the following co-
ordinates, .

x = 2t2 & y = 4t
P (2p2,  4p)  & Q (2q2,  4q)

a) Find the gradient of the normal to the curve at P

b) Find the gradient of the chord PQ

c) Show that  when chord PQ is normal to the curve at Pp2 + pq + 2 = 0

d) The normal to a point  meets the curve again at point V. The normal to point V crosses
the curve at point W. Find the co-ordinates of W.

U (8,  8)

Step 1 ----- Draw a sketch!!!!!!

t =
y

4
 ⇒  x = 2 ( y

4)
2

 ⇒  y
2 = 8x

8070605040302010

-20

0

20
P (2p2, 4p)

Q (2q2, 4q)

y

x

a)  Find the gradient at point P:

      x = 2t
2 & y = 4t

∴ 
dx

dt
= 4t 

dy

dt
= 4

∴
dy

dx
=

dy

dt
×

dt

dx
= 4 ×

1

4t
=

1

t

m2 ×
1

t
= −1The normal  is given by: m2

∴ m2 = − t

P (2p
2,  4p) ;  y = 4p ⇒  ∴ 4p = 4t ⇒  p = tAt point 

 P = − pThe gradient of the normal at point

b)  The gradient of a straight line is 
y1 − y2

x1 − x2

PQ m =
4p − 4q

2p2 − 2q2
For the line 

  =
2 (p − q)

(p − q) (p + q)
=

2

(p + q)
Simplifying :

c) The line PQ is normal to the curve at P. Hence:

2

(p + q)
= − p

2 = − p (p + q) = − p2 − pq

∴ p2 + pq + 2 = 0
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d) Consider the line UV as the same as PQ

U (8,  8)  y ≡ 4p = 8 ⇒  p = 2For 

q p
2 + pq + 2 = 0Find the value of using 

p = 2 :  4 + 2q + 2 = 0 

∴ 2q = − 6 ⇒ q = −3

V = (2q
2,  4q) = (18, −12)Co-ordinates of  

Now consider the line VW as the same as PQ. 

4p = −12 ⇒  p = −3So 

q p
2 + pq + 2 = 0Find the value of using 

p = −3 :  9 − 3q + 2 = 0 ∴ − 3q = −11 ⇒ q =
11

3

W = (2 × (11

3 )
2

,  4 × (11

3 )) = (242

9
,

44

3 )Co-ordinates of  

      = (26
8

9
,  14

2

3)
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Implicit Functions

65.1 Intro to Implicit Functions

For the most part we have dealt with ‘explicit functions’ of x, where a value of y is defined only in terms of x.

Functions have been in the form , and the derivative  is obtained by differentiating w.r.t x.y = f (x)
dy

dx
= f ′ (x)

However, some functions cannot be rearranged into the simpler form of , or .  y = f (x) x = f (y)

If we cannot express y solely in terms of x, we say y is given implicitly by x. Similarly, if we cannot express x
solely in terms of y, we say x is given implicitly by y.

Even so, given a value of x, a value for y can still be found, after a bit of work.

E.g.  y = 2x
2 − 3x + 4    x.is expressed explicitly in terms of 

 x
2 + y

2 − 6x + 2y = 0 is expressed implicitly.

Typical examples of implicit functions are found in the equations of circles, ellipses and hyperbolae.

An example implicit function showing
the complex shape given by a cubic
function.

y

−2

2

x−1 0 1 2

−1

−2

1

3y3 − x3 + 2y2x = 5y
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65.2 Differentiating Implicit Functions

By now, differentiating an explicit function, such as , should have become second nature. 

So much so, that without thinking, the first thing we write down when we see a differential is 

y = f (x)
dy
dx

=…

In differentiating an implicit function, this blind technique won’t work, since you cannot make y the subject of
the equation first.

To differentiate an implicit function, we differentiate both sides of the equation term by term w.r.t x. 

In fact, this is what we have always done, but we tend to forget that the differential of y wrt to x is . 
dy
dx

The difficult part of dealing with these functions is knowing what to do with terms such as  and this is
where the chain and product rules come to the rescue.

y2,  x3y2

We use the chain rule such that:

d 
dx

ƒ (y) =
d 
dy

ƒ (y) ×
dy

dx

Simply stated, the chain rule says take the differential of the outside function and multiply by the differential of
the inside function.

The general rule for implicit functions becomes: differentiate the x bits as normal, and then the y bits w.r.t y and

multiply by . 
dy
dx

Remember that any terms in y now differentiate to multiples of .
dy
dx

65.2.1  Example:

Find  if:  
dy
dx

x2 + 2y − y2 = 5

Differentiate both sides of the equation & consider each term:

d

dx
(x2) +

d

dx
(2y) −

d

dx
(y2) = 0

 
d

dx
(x2) = 2xTerm 1:

 
d

dx
(2y) =?  Term 2: Use the chain rule to differentiate a y term w.r.t x:

        
d

dx
(2y) =

d

dy
(2y) ×

dy

dx
⇒ 2

dy

dx

 
d

dx
(y2) =

d

dy
(y2) ×

dy

dx
⇒ 2y

dy

dx
Term 3:

dy

dx
Combining the resulting terms and rearrange to give 

2x + 2
dy

dx
− 2y

dy

dx
= 0 ⇒  x +

dy

dx
− y

dy

dx
= 0

dy

dx
− y

dy

dx
= −x

dy

dx
(1 − y) = −x      ⇒  

dy

dx
=

−x

(1 − y)

∴ 
dy

dx
=

x

(y − 1)
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65.3 Differentiating Terms in y w.r.t x

Terms in y differentiate to multiples of  using the chain rule.
dy
dx

65.3.1  Example:

1 Differentiate w.r.t to x: x2 + y2 + 3y = 8

Solution:
Differentiate both sides of the equation & consider each term:

2x +
d

dx
(y2) +

d

dx
(3y) = 0

   
d

dx
(y2) =

d

dy
(y2) ×

dy

dx
⇒ 2y

dy

dx
Assign chain rule to the  term:y2

∴ 2x + 2y
dy

dx
+ 3

dy

dx
= 0

   (2y + 2)
dy

dx
= −2xRearrange: 

 ∴        
dy

dx
=

−2x

2y + 2

2 Differentiate w.r.t to x:     x2 + y2 − 6x + 2y = 0

Solution:

    2x + 2y 
dy

dx
− 6 + 2

dy

dx
= 0

       2x + (2y + 2)
dy

dx
− 6 = 0Rearrange: 

  ∴  
dy

dx
=

6 − 2x

2y + 2

3 Find an expression for the gradient of the curve: 3x2 − 2y3 = 1

Solution:

6x − 6y
2 

dy

dx
= 0   ⇒   

dy

dx
=

6x

6y2
=

x

y2

4 Differentiate w.r.t to x:   y = ax

Solution:

 ln y = ln ax = x ln aTake logs both sides:

 
1

y

dy

dx
= ln aDifferentiate w.r.t to x:

     ∴ 
dy

dx
= y ln a

 y = a
x     ∴ 

dy

dx
= a

x ln abut:

    
dy

dx
(ax) = a

x ln aHence:
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5 Differentiate w.r.t to x:    sin (x + y) = cos 2y

Solution:
Differentiate both sides of the equation & consider each term:

d

dx
[sin (x + y)] =

d

dx
(cos 2y)

 
d

dx
[sin (x + y)] =

d

dy
[sin (x + y)] ×

d

dx
(x + y)Assign chain rule to LHS:

             
d

dx
[sin (x + y)] = cos (x + y) × (1 +

dy

dx)
      

d

dx
(cos 2y) = − sin (2y) ×

d

dx
(2y)Use chain rule on the RHS:

             
d

dx
(cos 2y) = − sin (2y) × 2

dy

dx

∴    (1 +
dy

dx) cos (x + y) = − 2 sin (2y)
dy

dx
   … (1)

 cos (x + y) + cos (x + y)
dy

dx
= − 2 sin (2y)

dy

dx

     2 sin (2y)
dy

dx
+ cos (x + y)

dy

dx
= − cos (x + y)

             
dy

dx
=

− cos (x + y)
2 sin (2y) + cos (x + y)

It is not necessary to find the expression for gradient unless asked for. To find a gradient from

given coordinates just substitute into equation (1), then rearrange for .
dy
dx
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65.4 Differentiating Terms with a Product of x and y

These need to be treated as a product of two functions, hence, we use the product and chain rules to differentiate
them.

Recall:

         y = uvIf 

    
dy

dx
= u

dv

dx
+ v

du

dx

The examples 1 & 3 below show the product and chain rule used in full. Once mastered, we can generally

differentiate powers of y normally w.r.t y and append .
dy
dx

65.4.1  Example:

1 Differentiate w.r.t to x:    xy2

Solution:

 u = x  ⇒  
du

dx
= 1Let

 v = y
2 ⇒  

dv

dx
=

dv

dy
×

dy

dx
= 2y

dy

dx
   Let Use chain rule

∴   
d

dx
(xy

2) = u
dv

dx
+ v

du

dx
= x . 2y

dy

dx
+ y

2. 1

        = 2xy 
dy

dx
+ y

2

2 Using the result from (1) above, differentiate w.r.t to x:    x3 + xy2 − y3 = 5

Solution:

3x
2 + 2xy 

dy

dx
+ y

2 − 3y
2 

dy

dx
= 0

3x
2 + y

2 +
dy

dx
[2xy − 3y

2] = 0

dy

dx
[2xy − 3y

2] = −3x
2 − y

2

dy

dx
=

−3x2 − y2

[2xy − 3y2] =
3x2 + y2

[3y2 − 2xy]

3 Differentiate w.r.t to x:     y = xey

Solution:

 u = x ⇒  
du

dx
= 1Let

 v = e
y ⇒  

dv

dx
=

dv

dy
×

dy

dx
= e

ydy

dx
Let

 
dy

dx
= x ey 

dy

dx
+ e

y
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4
e

x
y = sin x  

d2y

dx2
+ 2

dy

dx
+ 2y = 0If show that: 

Solution:

Differentiate both sides of the equation w.r.t to x :

       ex 
dy

dx
+ ye

x = cos x  u = e
x  v = yProduct rule:

 e
x 

d2y

dx2
+ e

x 
dy

dx
+ ye

x +
dy

dx
e

x = −sin x2nd Differentiation

    sin x = e
x
yBut

     
d2y

dx2
+

dy

dx
+ y +

dy

dx
= −y

    ⇒
d2y

dx2
+ 2

dy

dx
+ 2y = 0

5 Differentiate w.r.t x:   5x4 + x2y3 + 5y2 = 0

Solution:

Differentiate both sides of the equation w.r.t to x :

20x
3 +

d

dx
(x2

y
3) +

d

dx
(5y

2) = 0

                u = x
2     v = y

3Product rule:

      
d

dx
(x2

y
3) = 


x

2 3y
2dy

dx
+ y

3 2x


    
du

dx
= 2x 

dv

dx
= 3y

2dy

dx
Now:

d

dx
(5y

2) = 10y
dy

dx
and

20x
3 + 


x

2 3y
2dy

dx
+ y

3 2x


+ 10y
dy

dx
= 0

20x
3 + 3x

2
y

2dy

dx
+ 2xy

3 + 10y
dy

dx
= 0

3x
2
y

2dy

dx
+ 10y

dy

dx
= −20x

3 − 2xy
3

dy

dx
=

−20x3 − 2xy3

3x2y2 + 10y

6 Differentiate w.r.t x:   xy

Solution:

Differentiate both sides of the equation w.r.t to x (2 methods):

xy ⇒  (xy)
1
2  ⇒  x

1
2y

1
2

(1)  
d

dx
(x1

2y
1
2) = x

1
2 

1

2
 y−1

2 
dy

dx
+  y

1
2 

1

2
 x−1

2 =
1

2 (x
1
2

y
1
2

dy

dx
+

y
1
2

x
1
2 )

(2)  
d

dx
(xy)

1
2 =

1

2
(xy)−1

2 
d

dx
(xy) =

1

2
(xy)−1

2 x
dy

dx
+ y =

1

2






x
1
2

y
1
2

dy

dx
+

y
1
2

x
1
2
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65.5 Tangents and Normals of Implicit Functions

65.5.1  Example:

1 Find the equation of the tangent at  to the curve:   (x1, y1) x2 + 2y2 − 6y = 0

Solution:
Differentiate both sides of the equation w.r.t to x :

2x − 4y
dy

dx
− 6

dy

dx
= 0

2x =
dy

dx
(4y + 6) = 0

∴ 
dy

dx
=

2x

4y + 6

∴ 
dy

dx
=

x

2y + 3

(x1, y1)  
dy

dx
=

x1

2y1 + 3
At 

 y − y1 =
x1

2y1 + 3
(x − x1)Equation of tangent is: 

2  Find the gradient for the curve  at the point (− 4, 1). x2 + 2xy − 2y2 + x = 2

Solution:

Differentiate both sides of the equation w.r.t to x :

  2x +
d

dx
(2xy) −

d

dx
(2y

2) + 1 = 0

  
d

dx
(2xy) = 2x

dy

dx
+ 2y     u = 2x  v = yBut: Product rule:

d

dx
(2y

2) = 4y
dy

dx
and

  2x + 2x
dy

dx
+ 2y − 4y

dy

dx
+ 1 = 0

  2x + 2x
dy

dx
+ 2y − 4y

dy

dx
+ 1 = 0   … (1)

  2x
dy

dx
− 4y

dy

dx
= −2x − 2y − 1

  
dy

dx
(2x − 4y) = −2x − 2y − 1

  
dy

dx
=

−2x − 2y − 1

(2x − 4y)
=

2x + 2y + 1

4y − 2x

 
dy

dx
=

2 (−4) + 2 (1) + 1

4 (1) − 2 (−4)
= − 

5

12
When at (− 4, 1)

Alternatively, save time by substituting the given coordinates in the earlier equation (1)

  − 8 − 8
dy

dx
+ 2 − 4

dy

dx
+ 1 = 0

  − 12
dy

dx
= 5   ⇒   

dy

dx
= − 

5

12
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3 Find the equation of the tangent to the curve  at the point (2, 3)3x2 − xy − 2y2 + 12 = 0

Solution:
Differentiate both sides of the equation w.r.t to x :

  6x − x
dy

dx
− y − 4y

dy

dx
= 0

  − x
dy

dx
− 4y

dy

dx
= y − 6x

  
dy

dx
=

6x − y

x + 4y

 
dy

dx
=

6 (2) − 3

2 + 4 (3)
=

9

14
Gradient at point (2, 3)

Equation of the tangent at point (2, 3)

  y − 3 =
9

14
(x − 2)

  14y = 9x + 24

4 Find the gradient of the curve  at the point where y = 1x3y − 7 = sin (π
2y)

Solution:
Find the x-coordinate to start with:

 y = 1,  ⇒   x3 − 7 = sin (π
2 )  When

   ∴     x3 = 1 + 7 

       x = 3 8 = 2

Differentiate both sides of the equation w.r.t to x :

d

dx
(x3

y) − 0 =
d

dx
sin (π

2
y)

  
d

dx
(x3

y) = 

x

3dy

dx
+ y3x

2


  u = x
3  v = yNow: Product rule:

    
d

dx
sin (π

2 ) = cos (π
2

y) ×
d

dx (π
2

y) = cos (π
2

y) ×
π
2

dy

dx
 and: Chain rule

∴  x3dy

dx
+ 3x

2
y =

π
2

cos (π
2

y) dy

dx

 x = 2,  y = 1,  ⇒   8
dy

dx
+ 3 × 4 × 1 = 0When

∴ 8
dy

dx
= −12 

       
dy

dx
= − 

12

8
= − 

3

2
aeqfal
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65.6 Stationary Points in Implicit Functions

65.6.1  Example:

1 Find the gradient for the curve  at the point where x = 1. y2 − xy + 4x2 = 6

Solution:

Differentiate both sides of the equation w.r.t to x :

d

dx
(y2) −

d

dx
(xy) + 8x = 0

   
d

dx
(y2) = 2y

dy

dx
Now:

     
d

dx
(xy) = x

dy

dx
+ y    u = x  v = yand: Product rule:

∴ 2y
dy

dx
− x

dy

dx
+ y + 8x = 0

     2y
dy

dx
− x

dy

dx
− y + 8x = 0   … (1)

     
dy

dx
(2y − x) = y − 8x

     
dy

dx
=

y − 8x

(2y − x)

x = 1 y
2 − y + 4 − 6 = 0 ⇒  y

2 − y − 2 = 0When 

∴       (y + 1) (y − 2) = 0 ⇒  y = −1   y = 2

(1, −1)  
dy

dx
=

−1 − 8

(−2 − 1) =
−9

−3
= 3

(1,  2)    
dy

dx
=

2 − 8

(4 − 1)  =
−6

3
= −2

Show that at the stationary points: 10x2 − 1 = 0

dy

dx
=

y − 8x

(2y − x) = 0

∴  y − 8x = 0

  y = 8x

Substitute into the original function:

 (8x)2
− x (8x) + 4x

2 = 6

 64x
2 − 8x

2 + 4x
2 − 6 = 0

 60x
2 − 6 = 0

 10x
2 − 1 = 0

Alternatively, recognise that  and substitute into the differential at (1)
dy
dx

= 0

 2y
dy

dx
− x

dy

dx
− y + 8x = 0

 0 − 0 − y + 8x = 0

∴ y = 8x  etc.
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2 Find an expression for the x-coordinates of the stationary points of the equation:

 ax2y + by3 = cx + 6

Solution:

Differentiate both sides of the equation w.r.t to x :

d

dx
(ax

2
y) +

d

dx
(by

3) = c

    
d

dx
(ax

2
y) = ax

2dy

dx
+ y2ax    u = ax

2  v = yNow: Product rule:

        
d

dx
(by

3) = 3by
2dy

dx
and:

  ax
2dy

dx
+ y 2ax + 3by

2dy

dx
= c

  ax
2dy

dx
+ 2axy + 3by

2dy

dx
= c     … (1)

At the stationary point , so substitute this into the differential at (1). 

Then find an expression for y and substitute that into the original equation.

dy
dx

= 0

∴  0 + 2axy + 0 = c  ⇒  2axy = c

∴  y =
c

2ax
          … (2)

  ax
2 

c

2ax
+ b ( c

2ax)
3

= cx + 6  Sub (2) into original equation

  
c

2
x +

bc3

8a3x3
= cx + 6

  
bc3

8a3x3
= cx −

c

2
x + 6  ⇒  

bc3

8a3x3
=

c

2
x + 6

 (cx + 3) x
3 =

2bc3

8a3
The x-coordinate given by:

aeqfal

65.7 Implicit Functions Digest

              

Function  f (y) Dif f erential  dy
dx = f ′ (x)

a      0

ax      ax ln a

akx     k akx ln a

xy     x 
dy

dx
+ y

x2y     x2 
dy

dx
+ 2xy

Function  f (y) Dif f erential  dy
dx = f ′ (x)

sin (ky)     k 
dy

dx
 cos (ky)

cos (ky) − k 
dy

dx
 sin (ky)

uv     uv′ + vu′

u

v
   

vu′ − uv′
v2
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66 • C4 • Differential Equations

66.1 Intro to Differential Equations

At last, after years of work, learning to differentiate and integrate various functions, we now get to put all this
knowledge to work on practical problems.

A differential equation is one in which the variables x, y and one of the derivatives of y w.r.t x are connected in

some way. For the purposes of this section we will only consider the first derivative of the function, , although

higher derivatives such as  can be used. The first derivative leads to a first order differential equation.

dy
dx

d2y

dx2

The general form of a first order differential equation is:

f (y)
dy

dx
= g (x)

where f is a function of y only and g is a function of x only. 

Typically, the differential will be w.r.t time t, such as a change of area with time, giving . 

Normally a differential equation is solved by eliminating the differential part by integration.

dA
dt

66.2 Solving by Separating the Variables

Differential equations are solved by separating the variables, which, in simple terms, means moving all the terms
in y and dy to the LHS of the equation, and the terms in x and dx to the RHS. Both sides can then be integrated.

      f (y)
dy

dx
= g (x)

     ∫ f (y)
dy

dx
dx = ∫ g (x)  dx xIntegrate both sides w.r.t. 

  
dy

dx
dx = dyBut: 

    ∴ ∫ f (y) dy = ∫ g (x)  dx

Technically  is not a fraction, but can often be handled as if it were one. 
dy
dx

Integrating both sides would normally give rise to a constant of integration on both sides, but convention has it
that these are combined into one. This gives a general solution to the problem, with a whole family of curves
being generated, depending on the value of the constant of integration. A particular solution is found when
certain conditions are assumed, called the starting conditions, and the constant of integration can be calculated.

66.2.1  Example:

1 dy

dx
= xy

2 ⇒  ∴  
1

y2
 dy = x dxSolve: 

∫
1

y2
 dy = ∫ x dx

− 
1

y
=

x2

2
+ c

x = 0,  y = 0·5,  c = 0 − 2 = −2If and 

− 
1

y
=

x2

2
− 2
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2 1

x

dy

dx
=

2y

x2 + 1
Find the general solution of

Solution:
dy

dx
=

2xy

x2 + 1
 ⇒  dy =

2xy

x2 + 1
dx ⇒  

1

y
dy =

2x

x2 + 1
dx

Tip: it is good practise to keep any constant (2 in the above case) in the numerator.

∴ ∫
1

y
dy = ∫

2x

x2 + 1
dx     ∫

f ′ (x)
f (x)

 dx = ln | f (x)| + cRecall:

∴ ln y = ln (x2 + 1) + c

 ln y − ln (x2 + 1) = c ⇒  ln ( y

x2 + 1) = cRearrange:

∴ 
y

x2 + 1
= e

c

  y = e
c (x2 + 1)  e

c where is a constant, k

∴     y = k (x2 + 1)

3 A curve has an equation that satisfies the differential equation:

2
dy

dx
=

cos x
y

and which passes through the point (0, 2). Find the equation.

Solution:

2 dy =
cos x

y
 dx ⇒  2y dy = cos x dx

 ⇒ ∫ 2y dy = ∫ cos x dx

 ⇒ y
2 = sin x + c    (general solution)

c  4 = sin 0 + c ∴ c = 4Find using (0, 2):

Ans :  y
2 = sin x + 4  (particular solution)

4 A curve is such that the gradient of the curve is proportional to the product of the x & y
coordinates. If the curve passes through the points (2, 1) & (4, ), find the equation.e2

Solution:
dy

dx
∝ xy ⇒  

dy

dx
= kxy ⇒  

1

y
dy = kx dx

   ⇒  ∫
1

y
dy = ∫ kx dx ⇒  ln y =

kx2

2
+ c

k & c  (4, e
2)     2 = 8k + cFind using the given co-ordinates:

          (2,  1)     0 = 2k + c

∴ 6k = 2 k =
1

3
 c = −

2

3

 ln y =
x2

6
−

2

3
 ⇒ ln y =

x2 − 4

6
substituting:

Ans :  y = e
x2 − 4

6

556 ALevelNotesv8Erm 07-Apr-2013



66 • C4 •  Differential Equations

66.3 Rates of Change Connections

The key to doing these problems is to identify three components and write them down mathematically:

j What you are given

j What is required

j What is the connection between the two items above

(Sometimes the chain rule must be used to establish a connection).

66.3.1  Example:

1 If  and  increases at 5 radians per second, find the rate at which y is increasing when
.

y = 4 cos 2θ θ
θ = 2π

Solution:

 y = 4 cos 2θ,  
dθ
dt

= 5Given:

 
dy

dt
  θ = 2πRequired: when

 
dy

dt
=

dy

dθ
×

dθ
dt

Connection (chain rule):

y = 4 cos 2θ ∴
dy

dθ
= − 8 sin 2θ

dy

dt
= − 8 sin 2θ × 5 = − 40 sin 2θ

θ = 2π,  
dy

dt
= − 40 sin 4π = 0When 

In this case y is not increasing or decreasing.

2 A spherical balloon is inflated, such that its volume is increasing at a steady rate of 20 cm3 per
second. Find the rate of change of the surface area when the radius is 10 cm.

Solution:

 
dV

dt
= 20Given that the volume increases: 

   V =
4

3
πr

3 ⇒  
dV

dr
= 4πr

2Volume of a sphere is: 

  A = 4πr
2 ⇒  

dA

dr
= 8πrSurface area of a sphere is: 

 
dA

dt
We require the rate of change of area:

 
dA

dt
=

dA

dr
×

dr

dV
×

dV

dt
From the chain rule:

∴     
dA

dt
= 8πr ×

1

4πr2
× 20

∴     
dA

dt
=

40

r

When r = 10

      
dA

dt
=

40

10
= 4 cm

2 sec
−1

557



My A Level Maths Notes

66.4 Exponential Growth and Decay

The general form of exponential growth is:

    
dy

dt
= ky

    
1

y

dy

dt
= k

    ⌠
⌡

1

y

dy

dt
dt = ⌠

⌡
k dt   Integrate both sides wrt ‘t’

    ⌠
⌡

1

y
dy = ⌠

⌡
k dt

    ln y = kt + c

    y = e
kt + c

    y = e
kt

e
c

  ∴     y = Ae
kt   A = e

cwhere

Similarly, the general form of exponential decay is:

    
dy

dt
= − ky

  ∴        y = Ae
− kt     

66.4.1  Example:

1 A wonder worm experiment has found that the number of wonder worms, N, increases at a rate that
is proportional to the number of worms present at the time.

Solution:

The rate of change in population is 
dN

dt

  
dN

dt
∝ N

∴     
dN

dt
= kN where k is a positive constant

∴ 
1

N

dN

dt
= k 

  

Integrate both sides w.r.t t etc.

2 A chemical reaction produces two chemicals A and B. During the reaction, x grams of chemical A
is produced during the same time as y grams of chemical B. The rate at which chemical A is
produced is proportional to , whilst the production rate for chemical B is proportional to . Show
how A & B change w.r.t each other.

ex ey

Solution:

 
dx

dt
∝ e

x  
dy

dt
∝ e

yGiven:

  
dy

dx
=

dy

dt
×

dt

dx

  
dy

dx
= kye

y ×
1

kxex
= ke

y − x
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66.5 Worked Examples for Rates of Change

66.5.1  Example:

1 At each point P of a curve for which , the tangent cuts the y-axis at T. N is the foot of the
perpendicular from P to the y-axis. If T is always 1 unit below N, find the equation of the curve.

x > 0

PN

1

T

Err - Not to scale

x

{
x

y

Solution:
Gradient of tangent = 1x

  
dy

dx
=

1

x
Gradient of tangent

∴ y =  ln x +  c

2 A rat has a mass of 30gms at birth. It reaches maturity in 3 months. The rate of growth is modelled
by the differential equation:

dm

dt
= 120 (t − 3)2

where m = mass of the rat, t months after birth. Find the mass of the rat when fully grown.

Solution:
dm

dt
= 120 (t − 3)2

Given: 

m = 120 ∫ (t − 3)2  dt

m = 120


(t − 3)3

3


 + c

m = 40 (t − 3)3 + c

Evaluate c:

t = 0,  m = 30

30 = 40 (0 − 3)3 + c

c = 1110

∴ m = 40 (t − 3)3 + 1110

t = 3,  m = 40 (3 − 3)3 + 1110When 

   m = 1110 gm
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3 A farmer thinks that the rate of growth of his weeds is proportional to the amount of daylight that
they receive. If t = the time in years after the shortest day of the year, the length of effective
daylight, on any given day, is given by:

12 − 4 cos (2π t)   hours

On the shortest day of one year, the height of the plant is 120cm. 73 days later the weed has grown
to 130 cm. What will the height be on the longest day of the following year?

Solution:

 D (t) = 12 − 4 cos (2π t)Given: Daylight hours:

h = ,  & 
dh

dt
=  Let: height growth rate

  
dh

dt
∝ 12 − 4 cos (2π t)Given: growth rate:

dh

dt
= k [12 − 4 cos (2π t)]

∴   h = k ∫ 12 − 4 cos (2π t)  dt

⇒ h = 4k ∫ 3 − cos (2π t)  dt 

  = 4k

3t −

sin (2π t)
2π


 + c

cSubstitute to find 

t = 0 , h = 120When (shortest day)

120 = 4k (0 − 0) + c

c = 120Hence 

kSubstitute to find 

t =
73

365
=

1

5
, h = 130When 

130 = 4k

3t −

sin (2π t)
2π


 + 120

130 = 4k


3

5
−

sin (2π
5 )

2π

 + 120

130 = 4k (0·600 − 0·151) + 120

130 − 120 = 1·795k

k =
10

0·449
= 5·572

t = 0.5 Assume that on the longest day.

h = 4 × 5·572

3 × 0·5 −

sin (2π × 0·5)
2π


 + 120

h = 22·290 [1·5 − 0] + 120

h = 33·435 + 120

h = 153 cm (3 sf)
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4 A spherical balloon is inflated and when the diameter of the balloon is 10cm its volume is
increasing at a rate of 200 cm3/sec. Find the rate at which its surface area is increasing at that time.

Solution:

 V =
4

3
πr

3Given: volume of sphere:

 
dV

dt
Required: rate of change of volume:

 
dV

dt
=

dV

dr
×

dr

dt
Connection:

dV

dr
=

3 × 4

3
πr

2 = 4πr
2

∴ 
dV

dt
= 4πr

2.
dr

dt

dV

dt
= 200 2r = 10Now   when 

 200 = 100π 
dr

dt
Hence:

∴
dr

dt
=

2

π
 ⇒  rate of increase of radius at this particular time.

 S = 4πr
2Given: sfc area of sphere:

   
dS

dt
=

dS

dr
×

dr

dt
= 8πr.

dr

dt
Connection:

2r = 10,   
dr

dt
=

2

π
 When so that:

dS

dt
= 40π.

2

π
= 80 cm

2 / sec

5 A culture of bacteria grows at a rate proportional to the number of bacteria in the culture. The
number of bacteria in the culture is 1000 at lunch time. After 1 hour the number of bacteria is
3300. What is the number of bacteria after 3 hours and 24 hours?

Solution:

 
dP

dt
∝ PGiven:

∴ 
dP

dt
= kP ⇒  

dP

P
= k dt

∫
dP

P
= ∫ k dt

ln P = kt + c

 t = 0 P = 1000Find c: At lunchtime and population 

ln 1000 = c ⇒  c = 6·9

Find k:

ln 3300 = k + 6·9

k = 8·1 − 6·9 = 1·2

    ln P = 1·2 × 3 + 6.9  ⇒  ln P = 10·5    ⇒  P ≈ 36315After 3 hours:

 ln P = 1·2 × 24 + 6.9 ⇒  ln P = 35·7    ⇒  P ≈ 3·2 × 10
15

After 24 hours:
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6 A single super cell starts to divide and grow and after t hours the population has grown to P. At
any given time the population of bacteria increases at a rate proportional to . P2

Find how many hours it takes for the population to reach 10,000, given that after 1 hour the
population is 1000, and after 2 hours the population is 2000.

Solution:

 
dP

dt
∝ P

2Given:

∴ 
dP

dt
= kP

2    ⇒  
dP

P2
= k dt

∫
dP

P2
= ∫ k dt   ⇒  ∫ P

−2 dP = ∫ k dt

− P−1 = kt + c  ⇒  
1

P
= − (kt + c)

P = − 
1

(kt + c)
Find c:

 t = 1,  P = 1000At time 

1000 = − 
1

(k + c)
 ⇒  1000 (k + c) = −1

 t = 2,  P = 2000At time 

2000 = −
1

(2k + c)
 ⇒  2000 (2k + c) = −1

Use simultaneous equations

1000k + 1000c = −1    (1)

4000k + 2000c = −1    (2)

2000k + 2000c = −2    (3) = (1) × 2

2000k    = 1             (4) = (3) − (2)

∴ k =
1

2000

∴ 
1000

2000
+ 1000c = −1    k Substitute into (1)

1000c = − 
3

2
 ⇒  c = − 

3

2000

P = 10,000When population 

P = −
1

(kt + c)

kt + c = − 
1

P
 ⇒  kt = − 

1

P
− c

t =
1

k (−1

P
− c)

t = 2000 (− 
1

10000
+

3

2000)  ⇒  t = (− 
2000

10000
+

6000

2000)
t = 3 −

2

10
= 2·8 hrs
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7 The population of a small village is 1097 in the year 1566. Assuming the population, P, grows
according to the differential equation below, and where t is the number of years after 1566:

dP

dt
= 0.3Pe

− 0.3t

1) Find the population of the village in 1576, correct to 3 significant figures.

2) Find the maximum population the village will grow to, in the long term.

Solution:
dP

dt
= 0.03Pe

− 0.03t

dP

P
= 0.03e

− 0.03t
dt

∫
dP

P
= ∫ 0.03e

− 0.03t
dt

ln (P) = −
0.03

0.03
e

− 0.03t + c

ln (P) = − e− 0.03t + c

To find c: P = 1097 & t = 0

ln (1097) = − e0 + c = −1 + c

7 = −1 + c

c = 8

ln (P) = − e− 0.03t + 8

   = 8 − e
− 0.03t

To find the population in 10 years time:

ln (P) = 8 − e
− 0.03 × 10 = 8 − e

− 0·3 = 8 − 0·7408 = 7·2592

P = 1420 (3 sf)

To find the limiting population in the long term:

ln (P) = 8 − e
−0.03t = 8 −

1

e 0.03t

Note that as time increases, the term  1
e 0.03t → 0

Therefore, in the long term:

ln (P) = 8 − 0

P = 2980  (3 sf)
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8 Solve  and assume the starting conditions to be  when 
dy

dt
= y sin t y = 50 t = π secs

Solution:
dy

dt
= y sin t

1

y
 dy = sin t dt

∫
1

y
 dy = ∫ sin t dt

ln y = − cos t + c

y = e
−cos t + c ⇒  y = e

c e−cos t

 e
c = A Let the constant

∴ y = A e−cos t

To find A:

50 = A e−cos π

50 = A e−(−1)

∴ A =
50

e

y =  
50

e
 e−cos t

y =  50 e−1 e−cos t

y =  50 e−(1 − cos t)

9 A system is modelled by the equation:

p = 60 (1 − e
− t

4)
After T hours, p is 48 cms. Show that:

T = a ln b where a & b are integers

Find  a & b.

Solution:

48 = 60 − 60e
− t

4

48 − 60 = −60e
− t

4

−12

60
= −e

− t
4

1

5
= e

− t
4

ln (1

5) = −
t

4

t = −4 ln (1

5)
t = 4 ln 5    where a = 4 & b = 5 Note the change of sign here!!!
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10 From Q 9 above, show that:

dp

dt
= 15 −

p

4

Find p, when it is growing at a rate of 13 cm per hour.

Solution:

p = 60 − 60e
− t

4

dp

dt
= −60 × (−1

4) e
− t

4

 = 15 e− t
4

 60e
− t

4 = 60 − pBut 

∴ e
− t

4 =
60 − p

60
= 1 −

p

60

dp

dt
= 15 (1 −

p

60)  ⇒  15 −
15p

60

dp

dt
= 15 −

p

4

If the system is growing at a rate of 13 cms per hour, find p:

dp

dt
= 15 −

p

4
= 13 ⇒  

p

4
= 15 − 13 = 2

∴ p = 8

11 The gradient of the tangent at each point P of a curve is equal to the square of the gradient OP.
Find the equation of the curve.

Solution:

OP =
y

x
Gradient of line 

P =
dy

dx
Gradient of tangent at 

P

O

Err - Not to scale

y

x

dy

dx
= (y

x)
2

 =
y2

x2
Now 

∴ 
1

y2
dy =

1

x2
dx ⇒  y

−2
dy = x

−2
dx

 ∫ y
−2

dy = ∫ x
−2

dx

 −
1

y
= −

1

x
+ c

 
1

y
=

1

x
− c  ⇒  

1

y
=

1 − cx

x

∴ y =
x

1 − cx
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12 From the equation  show that  when  and where a & b are
integers.

x = 15 − 12e
− t

14 t = 14 ln (a
b) x = 10

Solution:

10 = 15 − 12e
− t

14

10 = 15 − 12e
− t

14

10 − 15

12
= e

− t
14 ⇒  

5

12
= e

− t
14

ln ( 5

12) = −
t

14

t = −14 ln ( 5

12)  ⇒  t = 14 ln (12

5 )  Note the change of sign here!!!

Show that 
dx

dt
=

1

14
(15 − x)

dx

dt
= −12 (− 1

14) e
− t

14 ⇒  
12

14
e

− t
14

e
− t

14 =
15 − x

12
But 

∴ 
dx

dt
=

12

14 (15 − x

12 ) =
1

14
(15 − x)

66.6 Heinous Howlers

Handling logs causes many problems, here are a few to avoid.

1 ln (y + 2) = ln (4x − 5) + ln 3

 (y + 2) ≠ (4x − 5) +  3You cannot just remove all the ln’s so:

 ln (y + 2) = ln [3 (4x − 5)]To solve, put the RHS into the form of a single log first:

∴ (y + 2) = 3 (4x − 5)

2 ln (y + 2) = 2 ln x

 (y + 2) ≠ 2xYou cannot just remove all the ln’s so:

 ln (y + 2) = ln x2To solve, put the RHS into the form of a single log first:

∴ (y + 2) = x
2

3 ln (y + 2) = x
2 + 3x

 (y + 2) ≠ e
x2

+ e
3xYou cannot convert to exponential form this way:

 (y + 2) = e
x2 + 3xTo solve, raise e to the whole of the RHS :
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67.1 Vector Representation

A scalar has magnitude only, e.g. length or distance, speed, area, volumes. 

A vector has magnitude AND direction. e.g. velocity, acceleration, momentum. i.e. A journey from one point to
another. Moving from point A to B is called a translation, and the vector a translation vector.

Notation: Three ways of expressing vectors:

 from A to B

          where 5 & −4 are the components in the x & y direction.

a (bold print) or in hand writing  or 

a

5
A

B

– 4

(1, 7)

(6, 3)

AB = 5
−4

Î

• AB
→

=

• ( ) ≡ ( )  =  
∆x

∆y
5

−4
5 across; 4 down

• aÊ a
~

The translation vector can be calculated from the co-ordinates A (1, 7), B (6, 3):

 AB
→

= a = ( ) = ( ) = ( )Bx − Ax

By − Ay

6 − 1

3 − 7

5

−4

The length of the line in the diagram represents the magnitude of the vector and
vectors are equal if the magnitude and direction are the same.

Vectors are parallel if they have the same direction and are scalar multiples of
the original vector. e.g. the vector 3b is parallel to the vector b, and three times
longer.

The vector −2b is 2 times the magnitude of b and in the opposite direction.

b

b

b

3b
– 2b

Be aware that the notation only tells you in which direction to move a point and nothing about its position in
space. In effect the vector carries two pieces of information, its magnitude and the inverse of its gradient. Hence
these are sometimes called ‘free’ vectors.

67.2 Scaler Multiplication of a Vector

If  and k is a constant number then:AB
→

= a = ( )x

y

     ka = ( )kx

ky

The constant k is called a scalar because it ‘scales up’ the length of the vector

67.3 Parallel Vectors

If  then the two vectors will look like this:a = 3c

  Vectors are parallel if one is a scalar multiple of the other.

a

c

If  and  then a and c are parallel because a = ( )0

15
c = ( )0

5
a = 3 ( ) = 3c

0

5
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67.4 Inverse Vector

 AB
→

= a = ( )   BA
→

=If
 x 
y

then −a = ( )−x

−y

67.5 Vector Length or Magnitude

The magnitude or length of a vector, (also called its modulus) is written:

| OP
→

 | = |( )|   | OQ
→

 | = |( )| x 
y

or for 3-D

 x 
y

z

Calculate the length using Pythagoras’s theorem:

If 

. 3A

B

4

(1, 2)

(4, 6)
y

x

b

a

| AB
→

 |2 = |( )|2 = a2 + b2 a 
b

AB
→

 = ( )3

4

| AB
→

 | = a2 + b2 = 32 + 42

| AB
→

 | = 25 = 5

| OQ
→

 | = |( )| = a2 + b2 + c2Similarly for 3-D vectors      
 a 
b

c

67.5.1  Example:

1 A line is drawn between two points A (1, 4, 2) and B (2, −1, 3). Find the distance between the two
points.

| AB
→

 | = (2 − 1)2 + (−1 − 4)2 + (3 − 2)2 = 1 + 25 + 1 = 27

| AB
→

 | = 3 3

67.6 Addition of Vectors

You should know that adding two vectors means finding the shortcut of their journeys. This is the same as
making one translation followed by another.

e.g.  ( ) + ( ) = ( )   2
3

  4
−9

  6
−6

The vector  is called the resultant of the vectors  and 

b

c

a

R

S

T

RT
→

= RS
→

+ ST
→

c = a + b

RT
→

RS
→

ST
→

It can be shown that if    and   then:  (commutative rule)a = ( )2
3

b = ( )  4
−1

a + b = b + a

If       then              (same magnitude but opposite direction).RS
→

= a SR
→

= −a

In a similar manner, larger paths can be added or subtracted.
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For example:

b

c

a
R

S

T

P

Q

d
e

PT
→

= PQ
→

+ QR
→

+ RS
→

+ ST
→

e = a + b + c + d

67.6.1  Example:

1
s ( ) + t ( ) = ( )Find the values of s and t given that 

2
3

−1
4

5

13

2s − t = 5

3s + 4t = 13

∴ s = 3  &  t = 1

67.7 Subtraction of Vectors

Note that a vector subtraction can be written:

a − b = a + (−b)

This is the same as saying: move along vector a,
followed by a move along vector −b

b

a
a − b

−b

a + b
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67.8 The Unit Vectors

A unit vector is a vector with length or magnitude of 1.

Any vector can be given as a multiple of  or ( )1
0 ( )0

1

e.g. AB
→

 = ( ) = 4 ( ) + 5 ( )4

5
1
0

0

1

In 2-D, the unit vectors are i & j where:

   and  

This enables us to write vectors in a more compact format.

In 3-D, the unit vectors are i,  j & k, where:

  ,   and 

   

Any vector can be expressed in terms of  i,  j & k

z

y

x

k

j
i

y

x

j

i

z

y

x

k

j

i

Alternative view

2-D

3-D

3-D

i = ( )1
0

j = ( )0

1

e.g.  AB
→

 = ( ) = 4 ( ) + 5 ( ) = 4i + 5j
4

5
1
0

0

1

i = ( ) 1 
0

0

j = ( ) 0 
1
0

k = ( ) 0 
0

1

 AB
→

= ( ) = 4 ( ) + 5 ( ) + 6 ( ) = 4i + 5j + 6ke.g.
 4 
5

6

 1 
0

0

 0 
1
0

 0 
0

1
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67.9 Position Vectors

A translation vector, on its own, has no frame of reference, it just hangs in space. It only tells you how to go
from point A to point B, not where point A is. 

Position vectors on the other hand, are the vector equivalent of a set of co-ordinates. The position vector allows
a translation vector to be fixed in space, using the origin as its fixed point of reference. 

The position vectors of a point A, with co-ordinates (5, 2), is the translation vector which takes you from the
origin to the point (5, 2). So the co-ordinates of point A are the same as the translation vector from point O to A.

= OA
→

= ( ) = 5i + 2j∴ position vector of point A 
5

2

 

a

O

A

B

b

– a+b

(5, 2)

AB
→

= AO
→

+ OB
→

AB
→

= −OA
→

+ OB
→

     = −a + b

The vector co-ordinates of point A are the same as the translation vector

from the origin, point O to point A, i.e.  .OA
→

67.9.1  Example:

1 Points A & B have position vector a and b. Find the position vectors of 
a) the midpoint M of AB and 
b) the point of trisection T such that AT = 2

3AB

Solution:
a)

a

b

O

A

B

M

– a+b

AM
→

= 1
2 (−a + b)

OM
→

= OA
→

+ AM
→

 = a + 1
2 (−a + b)

 = 1
2a + 1

2b

 = 1
2 (a + b)

b)

a

b

O

A

B

M

– a+b

T

OT
→

= OA
→

+ AT
→

OT
→

= a + 2
3 (−a + b)

 = 1
3a + 2

3b

 = 1
3 (a + 2b)
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2
 In a triangle ABC, the midpoints of BC, CA, and AB are D, E,
and F respectively. Prove that the lines AD, BE and CF meet
at a point G, which is the point of trisection of each of the
medians.

a

b

C

A

B

G

– a+b

a

b

– a+b

E

D

F k

h

m

AG via 3 different medians:

i) via AD:

  AG
→

= AC
→

+ CD
→

+ DG
→

 = 2b + (a − b) + m.DA
→

  DA
→

= −a + b − 2bWhere 

       = −a − b

  AG
→

= 2b + a − b + m (−a − b)

 = b + a + m (−a − b)

 = a (1 − m) + b (1 − m)

ii) via BE:

  AG
→

= AE
→

+ EG
→

 = b + h.EB
→

  EB
→

= −b + 2aWhere 

AG
→

= b + h (−b + 2a)

 = a (2h) + b (1 − h)

iii) via FC:

   AG
→

= AF
→

+ FG
→

 = a + k.FC
→

 = a + k (−a + 2b)

 = a (1 − k) + b (2k)

We can say that all the above vectors are the same, and therefore equal.

Hence coefficients of a are equal and coefficients of b are equal:

 (1 − m) = 2h = (1 − k)  ⇒  m = k (1)Coefficients of a

 (1 − m) = (1 − h) = 2k     (2)Coefficients of b

 (1 − m) = 2k ⇒ (1 − k) = 2k ⇒  k =
1

3
 ∴ m =

1

3
Subs (1) into (2)

     2h = (1 − k)  ⇒ 2h = (1 −
1

3)  ⇒  h =
1

3
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3
 In a triangle OAB, O is the origin with A having a position
vector of a and B having a position vector of b. M is the
midpoint of OA. Z is a point on AB such that .     P
is a point on OZ such that . 

b

B

O

A

P
a M

Z

AZ = 2ZB
OP = 3PZ

a) Find in terms of  a and  b the position vectors of M & Z.
b) Prove that the 
c) Hence or otherwise show that M, P, & B are on the same line, i.e. colinear.

MP = 1
4 (2b − a)

a)

OM
→

=
1

2
OA
→

=
1

2
a

AB
→

= AO
→

+ OB
→

= −a + b

ZB
→

=
1

3
(−a + b)

OZ
→

= b −
1

3
(−a + b) = b +

1

3
a −

1

3
b =

1

3
a +

2

3
b

b)

MP
→

= MO
→

+ OP
→

OP
→

=
3

4
OZ
→

=
3

4 (1

3
a +

2

3
b) =

1

4
a +

1

2
b

MP
→

= −
1

2
a +

1

4
a +

1

2
b =

1

2
b −

1

4
a

MP
→

=
1

4
(2b − a)

c)

MB
→

= MO
→

+ OB
→

MB
→

= −
1

2
a + b = b −

1

2
a

MB
→

=
1

2
(2b − a)

MP
→

=
1

2
 MB
→

The vectors  &  are parallel [same vector part  with different scalar part] and both
lines have a common point M. Therefore, the  points M, P, & B are on the same line, i.e. colinear.

MB
→

MP
→

(2b − a)
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67.10 The Scalar (Dot) Product of Two Vectors

This is where two vectors are multiplied together. One form of multiplication is the scaler product. The answer
is interpreted as a single number, which is a scalar. This is also known as the ‘DOT’ product, where a dot is used
instead of a multiplication sign. 

(Not to be confused with the vector product which is called the ‘CROSS’ product in vector terminology, hence
the careful selection of the names). 

N.B. You can’t have a dot product of three or more vectors, as it has no meaning.

There are two main uses for the DOT product:

j Calculating the angle between two vectors

j Proving that two vectors are either parallel or perpendicular

The dot product comes in two forms. The component form of the dot product is shown below:

 a • b = ( ) • ( ) = ( ) = (ax × bx) + (ay × by) = axbx + ayby

ax

ay

bx

by

axbx

ayby

( ) • ( )  = (3 × 2) + (4 × 5) = 26
3

4

2

5

( ) • ( ) = (2 × 0) + (−1 × 8) + (4 × −3) = −20
  2
−1
  4

  0
  8
−3

67.10.1  Example:

1 If  and , find p = (2i + 3j) q = (5i − 9j) p • q

(2 × 5) + (3 × −9) = 10 − 27 = −17

The other definition of the dot product uses the angle between vectors directly and is:

p • q = | p | | q | cos θ

∴    cos θ =
p • q

| p | | q |  

where  is the angle between the two vectors and  are the scalar lengths or magnitudes of the vectors.θ | p |  & | q |
Note that  is the angle between the two direction vectors of the line (more later).θ

Observe that the RHS of the equation is made up of scalar quantities, since  are scalars, as is .
Hence the dot product is a scalar quantity. In addition, because  are always +ve values, the dot product
takes the sign of .

| p |  & | q | cos θ
| p |  & | q |

cos θ

  It is important that the vectors are put ‘tail to tail’ to get a true idea of
the angle between them.

q

p

O
Q

P

q
q

q
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The inclusion of  in the equation brings some useful results:cos θ

j If p and q are parallel then  and θ = 0,  ∴ cos θ = 1 p • q = | p | | q |
j If p and q are perpendicular then  and θ = 90,  ∴ cos θ = 0 p • q = 0

j If the angle  is acute then  and θ cos θ > 0 p • q > 0

j If the angle  is between 90° & 180° then  and θ cos θ < 0 p • q < 0

j If , then either  or p and q are perpendicularp · q = 0 | p | = 0, | q | = 0

j Recall that  (2nd quadrant)cos θ = − cos (180 − θ)

Note also that:

 i • j = 0 i • k = 0 j • k = 0 (unit vectors perpendicular)

 i • i = 1  j • j = 1 k • k = 1 (unit vectors parallel)

      p • q = q • p              (commutative law)

 s • (p + q) = s • p + s • q   (distributive over vector addition)

        p • (kq) = (kp) • q = k (p • q)     (k is a scalar)

67.11 Proving Vectors are Perpendicular

If two lines or vectors are perpendicular, then θ = 90°,   cos θ = 0,  ∴ p · q = 0hence

67.11.1  Example:

1
Prove that the vectors  and  are perpendicular.p = ( )  3

−2
  4

q = ( )− 4
− 8
−1

Solution:

  p • q = | p | | q | cos ϕ

ϕ = 90° ⇒  cos ϕ = 0If 

∴  p • q = 0 if 2 vectors are perpendicular.

( ) • ( ) = (3 × −4) + (−2 × −8) + (4 × −1)
  3
−2
  4

− 4
− 8
−1

       = −12 + 16 − 4 = 0 ∴ perpendicular

575



My A Level Maths Notes

67.12 Finding the Angle Between Two Vectors

Recall:

cos θ =
p • q

| p | | q |

where and   and  p = ( ) ;  q = ( )  
ax

ay

bx

by
p • q = axbx + ayby | p | = (ax)2 + (ay)2  ,   | q | = (bx)2 + (by)2  

Find the value of  first, as if this is 0, then the lines are perpendicular.p · q

67.12.1  Example:

1 Find the angle between the two vectors  and .a = 3i + 4j b = 5i − 12j

Solution:

 cos θ =
p • q

| p | | q |

 cos θ =
(3 × 5) + (4 × −12)

32 + 42 × 52 + (−12)2 
=

15 − 48

5 × 13

 cos θ =
−33

65

        θ = cos
−1 (−33

65 ) = 120·5° (1dp)

2 Find the angle between the two vectors  and ( )2
3 ( )−1

7

Solution:

 p • q = | p | | q | cos ϕ 

(2 × −1) + (3 × 7) = 22 + 32 . (−1)2 + 72 cos ϕ 

19 = 13 . 50 cos ϕ 

cos ϕ =
19

13 . 50
= 0·745

ϕ = 41·8°
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67.13 Vector Equation of a Straight Line

The Vector Equation tells you how to get to any point on a line if you start at the origin. So we define r as the
position vector of any point on the line, (i.e. the vector co-ordinates of some point R).

What we do is to move from the origin (O) to a known point on the line (A), then move in the direction of the
slope to a point B.

Since the line AB is parallel with a vector p, then , where t is a scalar, and AB
→

=  tp OB
→

= OA
→

+ AB
→

Therefore, the general vector equation of a straight line is:

r = a + tp

r = a + λp or 

Where:   the position vector of a given point on the line, (e.g. point A)a =

  an ordinary number which is a variable (i.e. a scalar). Sometimes this is labelled t = λ or µ

 ‘direction vector’ of the line which defines the ‘slope’, (strictly speaking the inverse gradient).p =

Think of tp as the translation vector part of the line. 
The direction vector is the translation vector when t = 1

A

B

O (origin)

r

a

pt

Direction vector p

r = a + tp

Line parallel with

direction vector p(gives slope)

i.e. start point  +  direction moved

Position      Translation
Vector Vector

 p = 1/gradient

(in 2D case - in the 3D case
gradient has no real meaning)

An alternative form of the vector equation of a straight line can be written in component form. If
 and  then:a = ui + vj + wk p = xi + yj + zk

    r = ( ) + λ ( ) u 
v

w

 x 
y

z

The vector equation of a line that passes through two points A & B can be found thus:

A

B

O (origin)

r

a

b

R

  r = OR
→

= OA
→

+ AR
→

The vector

     AR
→

= t × AB
→

but

    AB
→

= −a + b = b − a

 ∴         r = OR
→

= a + t (b − a)

In this case the vector  is the direction vector of the line. (b − a)
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The value of t varies according to its position on the line:

j If , point R is on the line BA producedt < 0

j If , point R = A  and t = 0 r = a

j If , point R is between A and B0 < t < 1

j If , point R = B  and t = 1 r = b

j If , point R is on the line AB producedt > 0

A

B

O (origin)

r

a

b

R
t =

 0

t =
 1

t <
 0

t >
1

0 <
 t <

 1

67.13.1  Example:

1 r = ( ) + t ( )Draw the line with the vector equation:   
2
3

2

1

Method 1

then plot the graph.

t 0 1 2 3

point ( )2
3 ( )4

4 ( )6

5 ( )8

6

Method 2

 the gradient, so plot  and work out the other points according to the gradient.( ) =2

1 ( )2
3

2 Find a vector equation for the line which passes through (3, 1) and which has the gradient 1
2

r = ( ) + t ( )3

1

2

1

3 Find a vector equation for the line which passes through (3, 5) and (9, −2)

r = ( ) + t ( ) = ( ) + t ( )3

5

  9 − 3

−2 − 5

3

5

  6
−7

4 Find the vector equation for the line which passes through the point A (4, −1, 3) and parallel to the
vector 2i + 3j − 2k

 r = a + tp

∴ r = (4i − j + 3k) + t (2i + 3j − 2k)

5 Find the vector equation for the line which passes through the point with position vector  
and parallel to the vector 

3i + 2j
2i − j

∴ r = (3i + 2j) + t (2i − j)

6 Find the vector equation for the line parallel to the vector  and which passes through
the point with position vector  

3i + 4j − k
5i − 2j + 7k

a = 5i − 2j + 7k ⇒ ( )  b = 3i + 4j − k ⇒ ( )  5
−2
  7

3

4

−1

r = ( ) = ( ) + t ( ) x 
y

z

  5
−2
  7

  3
  4
−1
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7 Find the vector equation for the straight line which passes through the points A, B and C, given that

the position vectors of  A, B and C, are  and  respectively.( ) , ( )−1

  1
2
7 ( )3

9

Solution:

 To obtain the equation we need a direction vector parallel to the line, say
BC (or it could be AB, BA etc.) and a position vector, say A (could be B or
C). A

B

O (origin)

C

−1
 1(   )

3
9(  )(  )2

7

 a = ( )Position vector
−1

  1

 BC
→

= BO
→

+ OC
→

  ⇒  BC
→

= − ( ) + ( ) = ( )Direction vector
2
7

3

9
1
2

      r = OA
→

+ λ BC
→

∴  r = ( ) + λ ( )−1

  1
1
2

Observe that the equation of the line can be calculated in several different ways such as:

      r = OB
→

+ λ BC
→

    r = OC
→

+ λ BA
→

    r = OA
→

+ λ AB
→

 or or etc.

Although this would give different equations all would be valid, and give the position of any point
on the line for a suitable value of .λ

67.14 To Show a Point Lies on a Line

67.14.1  Example:

1  Show that the point with position vector   lies on the line L, with vector equationi + 2j
r = 4i − j + λ (i − j)

Solution:
If on the line, the point must satisfy the equation of the line.

i + 2j = 4i − j + λ (i − j)

i + 2j = 4i − j + λi − λj

Matching term coefficients:

i  1 = 4 + λ ⇒  λ = −3 term 

j  2 = −1 − λ ⇒  λ = −3 term 

As  in both cases, the point with position vector   lies on the line L.λ = −3 i + 2j

If  had not matched, then the point would not have been on the line. For a 3-D example
coefficients of ALL three unit vectors must be equal for the point to be on the line. 

λ
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67.15 Intersection of Two Lines

Two lines intersect if the position vector of both lines satisfy both equations. Two lines such as 

r1 = p + sq & r2 = a + tp

intersect when  r1 = r2

p + sq = a + tp   i.e.

Note that in a 2-D world, individual lines either intersect or are parallel. In a 3-D world, individual lines may
also intersect or be parallel, but they may not do either, (think of a railway line crossing over a road via a bridge).
In this case they are called skew.

67.15.1  Example:

1 Find the co-ordinate where these two lines meet:

r1 = ( ) + t ( )  and r2 = ( ) + s ( ) 1 
2

 1 
1

  3
−2

 1 
4

Solution:

⇒   1 + t = 3 + s    (1)Equate x components

⇒   2 + t = −2 + 4s      (2)Equate y components

Subtract and resolve simultaneous equations:

∴ − 1 = 5 − 3s ⇒  s = 2 ⇒  t = 4

∴ ⇒  r1 = ( ) + 4 ( ) = ( ) + ( ) = ( )Intersection 
 1 
2

 1 
1

 1 
2

 4 
4

5

6

∴ ⇒  r2 = ( ) + 2 ( ) = ( ) + ( ) = ( )Intersection 
  3
−2

1
4

  3
−2

2
8

5

6

∴ Co-ordinate is (5, 6) 

2   Find the co-ordinates of the foot of the perpendicular from (−5, 8) to the
line  (using the vector method).

50-5

-2

2

4

6

8

4x + y = 6

 

(−5, 8)

4x + y = 6

Soultion:
From the equation, the gradient of the line is − 4, hence, gradient of perpendicular is 14

Equation of perpendicular line is:   r = ( ) + t ( )−5

  8
 4 
1

⇒  x = −5 + 4tThe x component is

⇒  y = 8 + tThe y component is

4x + y = 6Substitute components into:  

4 (−5 + 4t) + (8 + t) = 6 ⇒ 17t − 12 = 6 ⇒  t =
18

17

r = ( ) +
18

17 ( )  ⇒  ∴ = (−13

17
,  9

1

17)−5

  8
4

1
Co-ordinates 
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3 Write down, in parametric form, the co-ordinates of any point on the line which passes through  (5,

4) in the direction of . Use these equations to find where this line meets ( )3

5
x + y = 8

r = ( ) + t ( )Line is expressed as: 
5

4

3

5

x = 5 + 3t   y = 4 + 5t

x + y = 8Substitute into : 

5 + 3t + 4 + 5t = 8 ⇒ 8t = −1 ⇒  t = −
1

8

∴ r = ( ) −
1

8 ( )  ⇒ ( ) − ⇒   = (4 
5

8
,  3

3

8) 5 
4

 3 
5

 5 
4 ( ) 3

8 
5
8

( )45
8

33
8

Co-ordinates 

67.16 Angle Between Two Lines

In the previous examples on angles we took the simple case of finding the angle between vectors. This time we
need the angle between two lines, expressed with a vector equation. In this case we need to consider the two
direction vectors of the lines.

Recall the dot product of two lines is defined by:

cos θ =
p • q

| p | | q |

Note that  is the angle between the two direction vectors of the lines. Where p is the direction vector of the
line   etc.

θ
r = a + sp

67.16.1  Example:

1 Find the angle between  and .r1 = (4, −1,  2) + s (2,  2, −5) r2 = (3, −5,  6) + t (1, −2, −1)

Solution:

r1 = ( ) + s ( )   r2 = ( ) + s ( ) 4
−1
 2

 2
 2
−5

 3
−5

 6

1
−2

−1

Direction vectors are used to find the angle:

p • q = ( ) • ( ) = 2 − 4 + 5 = −3
  2
  2
−5

  1
−2

−1

| p | = 22 + 22 + (−5)2 = 4 + 4 + 25 = 33 = 5·74

| q | = 12 + (−2)2 + (−1)2 = 1 + 4 + 1 = 6 = 2·45

| p | | q | = 3 22 = 14·07

cos θ =
p • q

| p | | q | = −
3

3 22
= −0·213

θ = 102·3°

Recall that if lines are perpendicular,   and therefore θ = 90°,  cos θ = 0hence p • q = 0

Similarly, if lines are parallel,   and therefore θ = 0°,  cos θ = 1hence p • q = | p | | q |
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67.17 Co-ordinates of a Point on a Line

If we have an equation of a line, say,  then the co-ordinates of any point on a line
are given by adding the parts of the equation together:

r = (4, −1,  2) + s (2,  3, −5)

r = ( ) + s ( )  = ( )  4
−1
  2

  2
  3
−5

Cco-ordinates of a point Q:
  4 + 2s

−1 + 3s

   2 − 5s

Note that when s = 0 then point Q coincides with the start point .(4, −1,  2)
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67.18 3D Vectors

Note the convention that z is ‘up’.

    means 5 in the x-direction, 4 in the y-direction, and 3 in the z-direction and

can also be written as .

z

y

x

k

j
i

( ) 5 
4
3

5i + 4j + 3k

j The equation of a 3-D line still works the same way as a 2-D line.

j Now have the concept of planes. The horizontal plane is defined by the x-y axes and z will be zero.
Vertical planes are defined by the z-y axes ( ), and the z-x axes ( ).x = 0 y = 0

j Lines in 3-D can be parallel, but non parallel lines do not necessarily intersect. (Think of railway lines
crossing a road). Lines which are not parallel & do not meet are called ‘skew’

j In 2-D, a vector direction can be thought of in terms of gradient. This does not follow in 3-D.

67.18.1  Example:

1 The co-ordinates of  The line AB meets the xy plane at C.
Find the co-ordinates of C.

A = (− 6,  3,  4)  & B = (− 4,  9,  5) .

Solution:

 = AB
→

= b - a = ( ) − ( ) ⇒ ( )The translation vector
− 4
  9
  5

− 6
  3
  4

 2 
6

1

This becomes the direction vector of a straight line such that:

r = ( ) + t ( )− 6
  3
  4

 2 
6

1

z = 0 ∴ 4 + t = 0 ⇒  t = −4This cuts the plane where 

r = ( ) + (−4) ( ) = ( ) + ( ) = ( ) ⇒ (−14, −21,  0)
− 6
  3
  4

 2 
6

1

− 6
  3
  4

− 8
−24
− 4

−14

−21
   0

The co-ordinates of C = (−14, −21,  0)

2 Find the point of intersection of these two lines:

r1 = ( ) + t ( )  & r2 = ( ) + s ( ) 6 
9

3

  2
−3

  1

−1
−3

−1

−1
  4
  5

Solution:

a)    6 + 2t = −1 − s   ⇒  s = −7 − 2tEquate x components:

b)    9 − 3t = −3 + 4s ⇒  12 − 3t = 4sEquate y components:

s               ∴ 12 − 3t = 4 (−7 − 2t) ⇒  12 − 3t = −28 − 8tSubstitute for 

            5t = −40 ⇒  t = −8,  s = 9

 (−10,  33, −5)Compare co-ords: first line

          (−10,  33,  44)In second line

∴ Lines do not meet, they are skew.
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3 Find the value of u for which the lines  and
 intersect.

r = (j − k) + s (i + 2j + k)
r = (i + 7j − 4k) + t (i + uk)

Solution:

(1)  r1 = ( ) + s ( )  & (2)  r2 = ( ) + t ( )0

1

−1

 1 
2

1

1
7

− 4

 1 
0

u

x    0 + s = 1 + tcomponent:

y    1 + 2s = 7 ∴ s = 3component:

∴ 3 = 1 + t    ⇒  t = 2

−1 + s = −4 + tu ⇒  2u = 3 + s ⇒ u = 3

(1)  r1 = ( ) + 3 ( ) ⇒ ( ) + ( ) ⇒ ( )0

1

−1

1
2

1

0

1

−1

3

6

3

3

7

2

(2)  r2 = ( ) + 2 ( ) ⇒ ( ) + ( ) ⇒ ( )1
7

− 4

1
0

u

1
7

− 4

2
0

6

3

7

2

4 The points A, B, & C have position vectors ,   anda = 7i + 4j − 2k b = 5i + 3j − 3k
c = 6i + 5j − 4k

a) Find angle BAC

b) Find the area of the triangle ABC

     Arrange tail to tail contact for measuring anglesC

A

B

(6, 5, −4)

(7, 4, −2)

(5, 3, −3)

q

Solution:

(a)  AC
→

= ( ) − ( ) = ( )  AB
→

= ( ) − ( ) = ( )  6
  5
− 4

  7
  4
−2

−1

  1
−2

  5
  3
−3

  7
  4
−2

−2

−1

−1

 p • q = | p | | q | cos θRecall:
 

 ( ) • ( ) = 6 × 6 × cos θ
−1

  1
−2

−2

−1

−1

    2 − 1 + 2 = 6 cos θ

 cos θ =
1

2
 ⇒   θ = cos

−1 (1

2) = 60°

(b)   Area =
1

2
ab sin c

 =
1

2
6 × 6  sin 60 = 3 sin 60 =

3 3

2
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5 The points A, B, & C have position vectors

a = ( ) ;  b = ( ) ;  c = ( ) 2 
1
2

−3

  2
  5

  4
  5
−2

The point D is such that ABCD forms a parallelogram.

a) Find the position vector of D

b) Find the position vector of the point of intersection, Q, of the diagonals of the parallelogram

c) Find angle BAC

C

AB

Q

(2, 1, 2)

D

(−3, 2, 5)

(4, 5, −2)

q

Q

Solution:

(a)  OD
→

= OA
→

+ AD
→

  BC
→

= AD
→

and

 BC
→

= ( ) − ( ) = ( )4

5

−2

−3

2

5

7

3

−7

∴  OD
→

= OA
→

+ BC
→

⇒  OD
→

= ( ) + ( ) = ( )2

1
2

7

3

−7

9

4

−5

 D = ( )Hence:
9

4

−5

(b)  AQ
→

=
1

2
AC
→

 AC
→

= ( ) − ( ) = ( )  ∴ AQ
→

= ( )  
4

5

−2

2

1
2

2
4

−4

1
2

−2

  OQ
→

= OA
→

+ AQ
→

= ( ) + ( ) = ( )2

1
2

1
2

−2

3

3

0

(c)  ( ) • ( ) = 35 × 9 × cos θ
−5

1
3

1
2

−2

 − 5 + 2 − 6 = 35 × 3 cos θ
 

 cos θ =
− 9

3 35
= − 

3

35

        θ = 120°
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6 Two vectors are perpendicular to each other.

r1 = ( ) + s ( )    r2 = ( ) + t ( ) 4 
1

1

 1 
4

5

−3

  1
− 6

 3 
a

b

a) Find the linear relationship between a & b.
As the vectors are perpendicular then the dot product of the vector must be zero, viz:

p • q = | p | | q | cos ϕ

ϕ = 90° ⇒  cos ϕ = 0 ∴ p • q = 0If 

In this case we only consider the directional vector part so:

( ) • ( ) = 0
 1 
4

5

 3 
a

b

(1 × 3) + (4 × a) + (5 × b) = 0 ⇒  3 + 4a + 5b = 0

4a + 5b = −3

b) If the lines also intersect, then find the values s & t as well as a & b. 
Rewriting the vectors:

r1 = ( )   r2 = ( )4 + s  
1 + 4s

1 + 5s

−3 + 3t

  1 + at

−6 + bt

Since they intersect then:

( ) = ( )4 + s  
1 + 4s

1 + 5s

−3 + 3t

  1 + at

−6 + bt

   4 + s = −3 + 3t ⇒  7 + s = 3t   (1)Equate x components:

  1 + 4s = 1 + at   ⇒  a = 4
s

t
   (2)Equate y components:

  1 + 5s = − 6 + bt ⇒  b =
7 + 5s

t
       (3)Equate z components:

4 unknowns require 4 equations to solve the problem.

       4a + 5b = −3   (4)And from above we have:

Substituting (2) & (3) into (4)

4 (4s

t ) + 5 (7 + 5s

t ) = −3 ⇒  
16s

t
+

35 + 25s

t
= −3

41s + 35 = −3t

 41s + 35 = − (7 + s)  ⇒  42s = − 42 ⇒ s = −1From (1)

∴ t = 2, a = −2, b = 1

c) Find the co-ordinates of the intersection.
Substitute the values for the variables into the vectors and compare LHS & RHS:

( ) = ( )4 + s 
1 + 4s

1 + 5s

−3 + 3t

  1 + at

−6 + bt

 Intersect at these co-ordinates: ( ) = ( )   3
− 3
− 4

   3
− 3
− 4
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7 A line, N, has a vector equation 

r = ( ) + t ( )  0
− 4
− 5

  2
  3
− 6

  The point B has the co-ordinates (5, −10, 10). 
 The point A, co-ordinates (0, − 4, −5) lies on the line N.

a) Find the angle between  and the line N.

b) Find the distance from the foot of the perpendicular, F, on line N, to the
     point B.

N

A

B

(0, −4, −5)

(5, −10, 10)

q

r

x

F
AB
→

Solution:

(a)  AB
→

= ( ) − ( ) = ( ) = ( )  5
−10

  10

  0
− 4
−5

5 − 0

− 10 − (− 4)
   10 − (−5)

   5
− 6
 15

 p • q = ( ) • ( )   [ AB
→

•  r ]
  5
− 6
 15

   2
   3
− 6

direction vector of

     = (5 × 2) + (− 6 × 3) + (15 × − 6) = 10 − 18 − 90 = − 98

     | p | = 25 + 36 + 225 = 286

     | q | = 4 + 9 + 36 = 49 = 7

 p • q = | p | | q | cos θ ⇒  − 98 = 286 × 7 cos θ

∴ cos θ =
−98

286 × 7
= −0·8278 ⇒  θ = 145·9°

(b)  sin (180 − 145·9) = sin 34·1 =
x

286
 ⇒  x = 286 × sin 34·1 = 9·49

8 Two lines have equations of  and . Find the
position vector of the point of intersection.

r = 2i + j + λ (i + 3j) r = 6i − j + µ (i − 4j)

Solution:
If the required point has position vector p, then this must satisfy the vector equation of both lines.

   p = 2i + j + λ (i + 3j)

   p = 6i − j + µ (i − 4j)

 ∴ 2i + j + λ (i + 3j) = 6i − j + µ (i − 4j)

Equating coefficients of terms:

 i    2 + λ = 6 + µ      ⇒      λ − µ = 4   (1) term:

 j  1 + 3λ = −1 − 4µ ⇒  3λ + 4µ = −2        (2) term:

 λ = 2,  µ = −2Solving (1) & (2) gives:     

Substitute  or  into the appropriate equation:λ = 2 µ = −2

   p = 2i + j + λ (i + 3j)

     = 2i + j + 2 (i + 3j)

     = 4i + 7j
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9 A vector passes through two points A & B with the following co-ordinates:

A = ( )  B = ( )11
  0
−1

− 9
  4
  5

 Find the vector equation of the line AB and the co-ordinates of

point N if the vector  is perpendicular to the vector .

Hence, find the length of , and the area of the triangle
ABO.

N

A

B(−9, 4, 5)

(11, 0, −1)

r

O

ON
→

AB
→

ON
→

Solution:

AB
→

= AO
→

+ OB
→

= ( ) + ( ) = ( )−11
   0
   1

− 9
  4
  5

−20

   4
   6

∴   r = ( ) + s ( )Equation of the line AB is: 
11
  0
−1

−20

   4
   6

The vector , and the co-ordinates of N, are both given by the equation of the line r, and all that
is required is to find the appropriate value of s. Let t be the value of s at point N. 

ON
→

As the lines are perpendicular then the scalar or dot product is zero. Using the direction vectors of
both vectors we have:

AB 
→

• ON
→

= 0

( ) • ( ) = −20 (11 − 20t) + 4 (4t) + 6 (−1 + 6t) = 0
−20

   4
   6

11 − 20t

            4t

−1 + 6t

    ⇒ −220 + 400t + 16t − 6 + 36t = 0

    ⇒ t =
226

452
=

1

2

∴     ( ) = ( )Co-ordinates of point N:
11 − 10

2

−1 + 3

1
2
2

 | ON
→

 | = 12 + 22 + 22 = 9 = 3Length of  is:ON
→

 | AB
→

 | = (−20)2 + 42 + 62 = 400 + 16 + 36 = 21·26Length of  is: AB
→

 
1

2
× 3 × 21·26 = 31·89 sq unitsArea of triangle ABO is:
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10 A line L has a vector equation of

r = ( ) + s ( )  1
−2
  3

 3 
3

3

 A point Q has the co-ordinates (6, 1, 22).

Find the co-ordinates of the foot, F, of the
perpendicular from the line L to the point Q 
and find the distance from Q to the line L.

Q

A

F

(6, 1, 22)

(1, −2, 3)

r
O

Line L

Solution:

If F represents the foot of the perpendicular from Q, then the vector  is:OF
→

OF
→

= OA
→

+ AF
→

OF
→

= ( ) + µ ( ) = ( )   
  1
−2
  3

 3 
3

3

  1 + 3µ
−2 + 3µ
  3 + 3µ

where  is the value of s that defines F.µ

As the lines are perpendicular then the scalar or dot product is zero. Using the direction vectors of
both vectors we have:

AF
→

• FQ
→

= 0  Measure angles ‘tail to tail’

The vector  is:QF
→

FQ
→

= OQ
→

− OF
→

FQ
→

= ( ) − ( ) = ( )6

1
22

  1 + 3µ
−2 + 3µ
  3 + 3µ

  5 − 3µ
  3 − 3µ
19 − 3µ

( ) • ( ) = 3 (5 − 3µ) + 3 (3 − 3µ) + 3 (19 − 3µ) = 0

  5 − 3µ
  3 − 3µ
19 − 3µ

 3 
3

3

    ⇒ 15 − 9µ + 9 − 9µ + 57 − 9µ = 0

    ⇒ 81 − 27µ = 0

  ∴  µ = 3

= ( ) = ( )   FQ
→

= ( ) = ( )∴  the co-ordinates of F
  1 + 9

−2 + 9

  3 + 9

10

  7
12

and
 5 − 9

3 − 9

19 − 9

− 4
− 6
 10

  QF
→

⇒  | QF
→

 | = 42 + 62 + 102 = 16 + 36 + 100The distance of

           | QF
→

 | = 152
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11 A trapezium has the co-ordinates for
points A, B, and D as shown.

Find the angle , the equation of the line
L1, and the co-ordinate of point C.

 and  are parallel, and the

magnitudes of  and  are equal.

θ

AB
→

DC
→

AD
→

BC
→

A
(4, −1, 5)

B

C

D

(9, −3, 9)

(?, ?, ?)

(7, 1, 6)

q
L1

u

(a) Find the angle :θ

cos θ =
p • q

| p | | q | =
AB
→

• AD
→

| AB
→

 | | AD
→

 |

    AB
→

= ( ) − ( ) = ( )       &     AD
→

= ( ) − ( ) = ( )  9
−3

  9

  4
−1

  5

   5
−2
   4

 7 
1

6

  4
−1

  5

 3 
2

1

AB
→

• AD
→

= ( ) • ( ) = (5 × 3) + (− 2 × 2) + (4 × 1) = 15 − 4 + 4 = 15
  5
−2
  4

3

 2 
1

| AB
→

 | = 25 + 4 + 16 = 45

| AD
→

 | = 9 + 4 + 1    = 14

∴ cos θ =
15

45  14

(b) The equation of L1:

L1 = ( ) + µ ( )   = ( ) + s ( ) 7 
1

6

   5
−2
   4

 The co-ordinate of point C 
 7 
1

6

   5
−2
   4

where s is the scalar that satisfies the point C.

(c) The co-ordinate of point C. There are several ways to tackle this, but one of the easiest ways
is to compare the magnitudes of the parallel lines in the trapezium:

L1    DC
→

= ( ) + s ( ) − ( ) = s ( )From the equation 
 7 
1

6

   5
−2
   4

 7 
1

6

   5
−2
   4

| DC
→

 | = 25s2 + 4s2 + 16s2 = s 45          … (1)

     | DC
→

 | = | AB
→

 | − 2| Au
→

 |From the diagram

cos θ =
adjacent

hypotenuse
=

| Au
→

 |
| AD
→

 |
  ∴ | Au

→
| = | AD

→
|  cos θ

| Au
→

| = | AD
→

| cos θ = 14 ×
15

45  14
=

15

45

| DC
→

| = | AB
→

| −2 | Au
→

|   ⇒        45 − 2
15

45
=

15

45
    … (2)

  s 45 =
15

45
    ⇒   s =

15

45 45
=

15

45
=

1

3
From (1) & (2)
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∴ = ( ) +
1

3 ( ) = ( ) = ( )The co-ordinate of point C 
 7 
1

6

   5
−2
   4

 7 + 5
3 

1 − 2
3

6 + 4
3

82
3

 13
71

3

67.19 Topical Tips

When doing vector problems, it pays to draw a sketch. For 3-D work, just plot the x & y axes and let the z axis
hang in space. Although this might not work out in every case, it does give a very good sense of how the vectors
are laid out.

In plotting a line for a given vector equation, say:

r = ( ) + s ( )  1
−2
  3

 3 
3

3

just plot the starting point A (1, −2, 3) and give
the scalar s an easy value like 1 and plot 
B (4, 1, 6).

A

B (4, 1, 6)

(1, −2, 3)

r

O

67.20 Vector Digest

   AB
→

= (B ) − (A )co-ords co-ords

   AB
→

= ( ) − ( ) =  ≡

 Bx 
By

Bz

 Ax 
Ay

Az

translation vector ‘slope’

  | OQ
→

 | = |( )| = a2 + b2 + c2

a

b

c

= r = + ×Equation of a line Start point co-ords (scalar Direction vector)

   r = ( ) + λ ( ) Sx 
Sy

Sz

 dx 
dy

dz

Scalar Product (n.b. the answer is a scalar)

   p • q = | p | | q | cos θ

  ∴     cos θ =
p • q

| p | | q |

   a • b = ( ) • ( ) = ( ) = (ax × bx) + (ay × by) = axbx + ayby

ax

ay

bx

by

axbx

ayby

 90 < θ < 180 p • q < 0When

  θ = 90°,  cos 90° = 0 p • q = 0When lines are perpendicular

 θ = 0°,      cos 0° = 1 p • q = | p | | q |When lines are parallel
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Function Properties Illustration

y = kx2

k > 0

Quadratic Function:

y is proportional to the square of x.

As x doubles, y increases 4 fold.

Function is even. 

Domain: 

Range: 

Intercept (0, 0)

Line symmetry about the y-axis. 

Decreasing function for x < 0

Increasing function for x > 0

[f (x) = f (−x)]
x ∈ R

f (x) ≥ 0

x

y

y = x2

y = kx3

k > 0

Cubic Function:

y is proportional to the cube of x.

As x doubles, y increases 8 fold.

Function is odd. 

Domain: 

Range: 

Intercept (0, 0)

Rotational symmetry about the origin -

order 2.

Increasing function

[−f (x) = f (−x)]
x ∈ R

f (x) ∈ R

x

y
y = x3

y=x2

y = kxeven

k > 0

Even Power Function:

Function is even

Domain: 

Range: 

Intercept (0, 0)

Passes points (−1, 1) and (1, 1)

Line symmetry about the y-axis. 

Decreasing function for x < 0

Increasing function for x > 0

x ∈ R
f (x) ≥ 0

x

y

y=x2

y = xeven
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y = kxodd

(k > 0)

Odd Power Function:

Function is odd

Domain: 

Range: 

Intercept (0, 0)

Passes points (−1, −1) and (1, 1)

Rotational symmetry about the origin -

order 2.

Increasing function

x ∈ R
f (x) ∈ R

x

y y = xodd

y=x2

n = even

y = kxn + xn − 1…
+  xn − 2 +… + c

(k > 0)

Even Order Polynomial Function:

Domain: 

Range: 

Intercepts yes

No of turning points: n − 1

x ∈ R
f (x) ≥  min vertex

4-1 1 2 3

y

x

n = odd

y = kxn + xn − 1…
+  xn − 2 +… + c

(k > 0)

Odd Order Polynomial Function:

Domain: 

Range: 

Intercepts yes

No of turning points: n − 1

x ∈ R
f (x) ∈ R

-2 -1 1 2

y

x

y =
k

x
= kx

−1

(k > 0)

Reciprocal Function:

Curve call a Hyperbola.

y is inversely proportional to x.

As x doubles, y decreases 2 fold.

Function is odd

Domain: 

Range: 

No intercepts

Asymptotes are x-axis and y-axis

Decreasing function

Rotational symmetry about the origin -

order 2.

x ∈ R,  x ≠ 0

f (x) ∈ R,  f (x) ≠ 0
-3 -2 -1 1 2 3

-40

-30

-20

-10

10

20

30

40

y = x −1

x

y
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y =
k

x2
= kx

−2

(k > 0

Inverse Square Function:

y is inversely proportional to the square

of x.

As x doubles, y decreases 4 fold

Function is even

Domain: 

Range: 

No intercepts

Asymptotes are x-axis and y-axis

Symmetric about the y-axis. 

x ∈ R,  x ≠ 0

 f (x) > 0

-3 -2 -1 1 2 3

-30

-20

-10

10

20

30

40

y = x −2

x

y

y =
k

xodd
= kx

−odd

(k > 0)

Inverse Odd Power Function:

Generic shape for this type of graph.

Function is odd

Domain: 

Range: 

No intercepts

Asymptotes: x-axis and y-axis

Decreasing function

Rotational symmetry about the origin -

order 2.

x ∈ R,  x ≠ 0

f (x) ∈ R,  f (x) ≠ 0

-3 -2 -1 1 2 3

y = x −odd

x

y

y =
k

xeven
= kx

−even

(k > 0)

Inverse Even Power Function:

Generic shape for this type of graph.

Function is even

Domain: 

Range: 

No intercepts

Decreasing function for x < 0

Increasing function for x > 0

x ∈ R,  x ≠ 0

 f (x) > 0

-3 -2 -1 1 2 3 x

y

y = x −even

y = k x = kx
1
2

(k > 0)

Square Root Function:

y is inversely proportional to the square

root of x.

As x increases 4 fold, y increases 2

fold.

Domain: 

Range: 

Intercept (0, 0)

Increasing function from 

x ∈ R,  x ≥ 0

 f (x) ≥ 0

x ≥ 0

x

y

y = x½

y = k −x = k (−x)
1
2 Square Root (−ve x) Function:

Domain: 

Range: 

Intercept (0, 0)

Decreasing function

x ∈ R,  x ≤ 0

 f (x) ≥ 0

x

y

y = (−x)½
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y =
k

x
= kx

−1
2

(k > 0)

Inverse Square Root Function:

y is inversely proportional to the square

root of x.

As x increases 4 fold, y decreases 2

fold.

Domain: 

Range: 

No Intercepts

Asymptotes: x-axis and y-axis

x ∈ R,  x > 0

f (x) > 0

x

y

y = x −½

y = 3
x Cube Root Function:

Odd function

Domain: 

Range: 

Intercept (0, 0)

Passes points  (1, 1), (0, 0), (−1, −1)

Rotational symmetry about the origin -

order 2.

No domain contraints on odd numbered

roots, as can take 5th, 7th, etc roots of a

negative number

x ∈ R
f (x) ∈ R

x

y

y = 3 x

y = ke
x

(k > 0)

Exponential Function:

y is proportional to a number raised to

the power x. 

As x increases, y increases

exponentially.

Domain: 

Range: 

Intercept (0, 1)

Asymptote: x-axis

Increasing function for +ve x

x ∈ R,
f (x) > 0

x

y

y = ex

(0, 1)

y =
k

ex
= ke

−x

(k > 0)

Decaying Exponential Function:

y is inversely proportional to a number

raised to the power −x. 

As x increases, y decreases

exponentially.

Domain: 

Range: 

Intercept (0, 1)

Horizontal asymptote: x-axis

Decreasing function for +ve x

x ∈ R
f (x) > 0

x

y

(0, 1) y = e−x
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y = k ln (x)

y = k logb (x)

k > 0

Log (ln) Function:

Domain: 

Range: 

Intercept (1, 0)

Asymptote: y-axis

Increasing function for +ve x

Reflection of  in the line

, hence inverse of 

x ∈ R,  x > 0

f (x) ∈ R

f (x) = ex

y = x ex

x

y

y = ln(x)

(1, 0)

1

e

y = k ln (−x)

y = k logb (−x)

k > 0

Log Function (−x):

Domain: 

Range: 

Intercept (−1, 0)

Vertical asymptote: y-axis

Decreasing function

x ∈ R,  x < 0

f (x) ∈ R

x

y

y = ln(−x)

(−1, 0)
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y = sin x Sine Function:

Odd function

Domain: 

Range: 

Periodic function, period 

x-intercept ( , 0)

y-intercept (0, 0)

Rotational symmetry, order 2, about the

origin and also at every point it crosses

the x-axis. 

Line symmetry about every vertical

line passing through each vertex.

x ∈ R
−1 ≤ f (x) ≤ 1

2π
sin (θ + 2π) = sin θ
sin (−θ) = −sin θ

nπ

90 180 270

-1

1

p/2 p 3p/2

y = sin x

360

2p

y

y = cos x Cosine Function:

Even function

Domain: 

Range: 

Periodic function, period  

x-intercept 

y-intercept (0, 1)

Rotational symmetry, order 2, about the

origin and also at every point it crosses

the x-axis. 

Line symmetry about every vertical

line passing through each vertex.

x ∈ R
−1 ≤ f (x) ≤ 1

2π
cos (θ + 2π) = cos θ
cos (−θ) = cos θ

(π
2

+ nπ,  0)
90 180 270

-1

1

p/2 p 3p/2

y = cos x

360

2p

y

y = tan x Tangent Function:

Odd function

Domain: 

Range: 

Periodic function, period  

x-intercept 

y-intercept (0, 0)

Vertical asymptotes: 

Rotational symmetry, order 2, about the

origin and also about 

x ∈ R, x ≠
π
2

+ nπ

f (x) ∈ R
π

(nπ,  0)

x =
π
2

+ nπ

±
π
2

, ±π, ±
3π
2

, …

36090 180 270

-1

1

-90

p/2 p 3p/2 2p

y = tan x

45

y
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y = cosec x Cosecant Function:

Odd function

Domain: 

Range: 

Periodic function, period 

No x or y intercepts

Vertical asymptotes: 

where  crosses the x-axis at any

multiple of  ( )

Rotational symmetry about the origin -

order 2.

Line symmetry about every vertical

line passing through each vertex.

x ∈ R, x ≠ nπ
−1 ≥ f (x) ≥ 1

| cosec x | ≥ 1

2π

x = nπ
sin x

π sin x = 0

90 180 270

-1

1

p/2 p 3p/2

y = cosec x

360

2p

y

−90

-p/2

y = 
sin x

1

y = sec x Secant Function:

Even function

Domain: 

Range: 

Periodic function, period 

y-intercept:  (0, 1)

Vertical asymptotes: 

where  crosses the x-axis at odd

multiples of  ( )

Line symmetry about the y-axis and

every vertical line passing through each

vertex.

x ∈ R, x ≠
π
2

+ nπ

−1 ≥ f (x) ≥ 1

| sec x | ≥ 1

2π

x =
π
2

+ nπ

cos x
½π cos x = 0

90 180 270

-1

1

p/2 p 3p/2

y = sec x

360

2p

y

−90

-p/2

y = 
cos x

1

y = cot x Cotangent Function:

Odd function

Domain: 

Range: 

Periodic function, period 

x-intercepts:  where 

has asymptotes

Vertical asymptotes: 

where  crosses the x-axis at any

multiple of  ( )

Rotational symmetry about the origin -

order 2.

x ∈ R, x ≠ nπ
f (x) ∈ R

π

(π
2

+ nπ,  0) tan x

x = nπ
tan x

π tan x = 0

36090 180 270

−1

1

-90

p/2 p 3p/2 2p

y = cot x

45
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y = sin2 x

y = −sin2 x

Squared Sine Function:

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = sin x

y = sin  x2

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = sin x

y = −sin  x2

y = cos2 x

y = −cos2 x

Squared Cosine Function:

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = cos x

y = cos  x2

o

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

y = cos x

y = −cos  x2

o

y = tan2 x

y = −tan2 x

Squared Tangent Function:

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

45

y = tan x

y = tan  x2

36090 180 270

-1

1

-90-180-270-360

p/2 p 3p/2 2p

45

y = tan x

y = −tan  x2
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y = sin−1 x Inverse Sine Function:

Odd function

Restricted Domain: 

Range: 

Intercept: (0, 0)

Rotational symmetry about the origin -

order 2.

Increasing function

−1 ≤ x ≤ 1

−
π
2

≤ sin
−1

x ≤
π
2

−1 1

p/2

y

-p/2

y = sin−1 x

x

y = cos −1 x Inverse Cosine Function:

Restricted Domain: 

Range: 

y-intercept 

Decreasing function

−1 ≤ x ≤ 1

0 ≤ cos
−1

x ≤ π

(0,
π
2 )

−1 1

p/2

p

y

y = cos−1 x

x

y = tan −1 x Inverse Tangent Function:

Odd function

Domain: 

Range: 

Intercept (0, 0)

Horizontal asymptotes: 

Rotational symmetry about the origin -

order 2.

Increasing function

x ∈ R

−
π
2

≤ tan
−1

x ≤
π
2

y = ±
π
2

y

x

p/2

-p/2

O

y = tan−1 x
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+

y2 = x

y = x

y = − x

Square Root Relation: 

Domain: 

Range: 

Intercept (0, 0)

Passes points  (4, 2), (0, 0), (4, −2) plus

others.

Not a true function. Can be made up of

two functions:  (top half)

 (bottom half)

x ∈ R,   x ≥ 0

f (x) ∈ R

y = x

y = − x

x

y

y2 = x

y = 3
x Cube Root Function:

Odd function

Domain: 

Range: 

Intercept (0, 0)

Passes points  (1, 1), (0, 0), (−1, −1)

Rotational symmetry about the origin -

order 2.

No domain contraints on odd numbered

roots, as can take 5th, 7th, etc roots of a

negative number.

x ∈ R
f (x) ∈ R

x

y

y = 3 x

602 ALevelNotesv8Erm 07-Apr-2013



69 • Apdx • Facts, Figures & Formulæ

69.1 Quadratics

69.1.1 Completing the Square

Standard solution:

x
2 + bx + c = (x +

b

2)
2

− (b

2)
2

+ c

x
2 − bx + c = (x −

b

2)
2

− (b

2)
2

+ c

For a quadratic of the form a (x + k)2 + q

y = a (x + k)2 + q

  (k,  q)Co-ordinates of vertex

  x = kAxis of symmetry

 a > 0,  If graph is ∪ shaped, vertex is a minimum point

 a < 0,  If graph is ∩ shaped, vertex is a maximum point

For a quadratic of the form ax2 + bx + c

x = −
b

2a
;  y = −

b2

4a
+ cTurning point is when 

     ax
2 + bx + c = a 



x

2 +
b

a
x +

c

a




        = a


(x +

b

2a)
2

− ( b

2a)
2

+
c

a





     ax
2 + bx + c = a (x +

b

2a)
2

−
b2

4a
+ c

69.1.2 Quadratic Formula

The roots of a quadratic are given by:

x =
−b ± b2 − 4ac

2a

The expression “ ”  is known as the discriminant. b2 − 4ac

If… Then… Roots or solutions Notes

Discriminant > 0 Graph intersects 
the x-axis twice

2 distinct real 
solutions

If the discriminant is a perfect square, 
the solution is rational and can be factorised.

Discriminant = 0 Graph intersects 
the x-axis once

1 real solution 

 = −
b

2a

Sometimes called repeated or coincident roots.
The quadratic is a perfect square. 

Discriminant < 0 Graph does not 
intersect the x-axis

No real solutions Only complex roots, which involve imaginary 
numbers .( −1)
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69.2 Series

69.2.1 Sigma Notation

The sigma notation can be handled according to these rules:

   ∑
n

r = 1

(ar + br) = ∑
n

r = 1

ar + ∑
n

r = 1

br

   ∑
k

r = 1

ar + ∑
n

r = k + 1

ar = ∑
n

r = 1

ar r < k < n

   ∑
n

r = 1

kar = k ∑
n

r = 1

ar

   ∑
n

1

c = nc c where is a constant

   ∑
n

1

1 = n

69.2.2 Standard Sigma Results

Certain standard sums exist such as:

   ∑
n

r = 1

r =
1

2
 n (n + 1)

   ∑
n

r = 1

r
2 =

1

6
 n (n + 1) (2n + 1)

   ∑
n

r = 1

r
3 =

1

4
 n2 (n + 1)2 = 



1

2
 n (n + 1)



2

=



∑

n

r = 1

r




2

These standard results can be used to derive more complicated series.

69.2.3 Arithmetic Progression

   U n = a + (n − 1) d

   Sn = n 
a + l

2
  or Sn =

n

2
[a + l]

where l = a + (n − 1) d

Sum to Infinity of a Arithmetic Progression

   Sn =
n

2
[2a + (n − 1) d]

   U n = a + U n − 1d

   U n + 1 = a + U nd
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69.2.4 Geometric Progression

       U n = ar
(n − 1)

       U n = U 0 r
n 

Sum of a Geometric Progression:

       Sn =
a (1 − rn)
(1 − r)

       Sn =
a (rn − 1)

(r − 1)
 r > 1

Sum to Infinity of a Geometric Progression:

       S∞ =
a

(1 − r)
  | r | < 1

69.2.5 Binomial Expansion (Positive integers)

The Binomial theorem, where n is a positive integer:

(a + b)n = a
n +

n

1!
a

n − 1
b +

n (n − 1)
2!

a
n − 2

b
2 +

n (n − 1) (n − 2)
3!

a
n − 3

b
3 +… +  bn

                  (n ∈ )N

(a + b)n =  an + n
C1 a

n − 1
b + n

C2 an − 2
b

2 + n
C3 a

n − 3
b

3 +… + n
Cr a

n − r
b

r +… + n
Cn − 1 ab

n − 1 + b
n

(a + b)n = a
n + ( ) a

n − 1
b + ( ) a

n − 2
b

2 + ( ) a
n − 3

b
3 +… + ( ) a

n − r
b

r +… + ( ) ab
n − 1 + b

nn

1

n

2

n

3

n

r

n

n − 1

(a + b)n = ∑
n

r = 0
( ) a

n − r
b

r or = ∑
n

r = 0

n
Cr a

n − r
b

rn

r

Where:

     n
Cr = ( ) =

n!

r! (n − r)!
n

r

     n
Cr = n

Cn − r

n
C2 = ( ) =

n (n − 1)
2 × 1

   n
C3 = ( ) =

n (n − 1) (n − 2)
3 × 2 × 1

n

2

n

3

The k-th term:

     = n
Ck − 1 an − k + 1

b
k − 1 or ( ) a

n − k + 1
b

k − 1n

k − 1

For the term in br

     = n
Cr a

n − r
b

r or ( ) a
n − r

b
rn

r

Note: the combination format will only work if n is a positive integer. For  then the full version of the
Binomial theorem is required.

n < 1

Where n is a positive integer, the expansion terminates after  terms, and is valid for all values of x.n + 1

The use of the  form of combination symbol, is simply that this is the symbology used on calculators.nCr
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69.2.6 Binomial Expansion (Rational or negative Index)

(1 + x)n = 1 + nx +
n (n − 1)

2!
x

2 +
n (n − 1) (n − 2)

3!
x

3 +
n (n − 1) (n − 2) (n − 3)

4!
x

4 +  …

   +  …
n (n − 1) … (n − r + 1)

r!
x

r …       ( | x | < 1, n ∈  )R

Just watch the minus signs!!! Thus:

(1 − x)n = 1 + n (−x) +
n (n − 1)

2!
(−x)2 +

n (n − 1) (n − 2)
3!

(−x)3 +
n (n − 1) (n − 2) (n − 3)

4!
(−x)4

(a + bx)n = a (1 +
bx

a )
n

= a
n (1 +

bx

a )
n

 = a
n 


1 + n

b

a
x +

n (n − 1)
2! (b

a
x)

2

+
n (n − 1) (n − 2)

3! (b

a
x)

3

+
n (n − 1) (n − 2) (n − 3)

4! (b

a
x)

4



| bax | < 1 | x | <
a

b
Valid for or 

j For the general Binomial Theorem any rational value of n can be used (i.e. fractional or negative
values, and not just positive integers).

j For these expansions, the binomial must start with a 1 in the brackets. For binomials of the form
, the a term must be factored out. 

Therefore, the binomial  must be changed to  . 

(a + bx)n

(a + bx)n a
n (1 +

b

a
x)

n

j When n is a positive integer the series is finite and gives an exact value of  and is valid for all
values of x. The expansion terminates after  terms, because coefficients after this term are zero.

(1 + x)n

n + 1

j When n is either a fractional and/or a negative value, the series will have an infinite number of terms.
and the coefficients are never zero.

j In these cases the series will either diverge and the value will become infinite or they will
converge, with the value converging towards the value of binomial .(1 + x)n

j The general Binomial Theorem will converge when . This is the
condition required for convergence and we say that the series is valid for this condition.

| x | < 1 (i.e. − 1 < x < 1)

j For binomials of the form , the series is only valid when ,   or    a
n (1 +

b

a
x)

n

| bax | < 1 | x | <
a

b

j The range must always be stated.

j When the series is convergent it will make a good approximation of  depending on the

number of terms used, and the size of x. Small is better.

(1 + x)n

     (1 + x)−1 = 1 − x + x
2 − x

3 + x
4 +…

     (1 − x)−1 = 1 + x + x
2 + x

3 + x
4 +…

     (1 + x)−2 = 1 − 2x + 3x
2 − 4x

3 + 5x
4 +…

     (1 − x)−2 = 1 + 2x + 3x
2 + 4x

3 + 5x
4 +…

| x | < 1All valid for 

Note that when the sign inside the bracket is different from the index, the signs in the expansion alternate, and
when they are the same the signs in the expansion are all positive.
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69 • Apdx •  Facts, Figures & Formulæ

69.3 Area Under a Curve

69.3.1 Trapezium Rule

For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈
h

2
[(y0 + yn) + 2 (y1 + y2 +… + yn − 1)]

     h =
b − a

n
  n =where and number of strips

The value of the function for each ordinate is given by: 

yi = f (xi) = f (a + ih)

and where i is the ordinate number.

In simpler terms:

A ≈
2

[( ) + 2 × ]width
First + last the sum of the middle y values

69.3.2 Mid-ordinate Rule

For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈ h [y1/2 + y3/2 +… + yn − 3/2 + yn − 1/2]

  h =
b − a

n
  n =where and number of strips

69.3.3 Simpson’s Rule

For a function  the approximate area is given by:f (x)

∫
b

a

f (x)  dx = ∫
xn

x0

f (x)  dx ≈
h

3
[(y0 + yn) + 4 (y1 + y3 +… + yn − 1) + 2 (y2 + y4 +… + yn − 2)]

  h =
b − a

n
  n =where and an EVEN number of strips

In simpler terms:

∫
b

a

f (x)  dx ≈
h

3
[( ) + 4 ( ) + 2 ( )]first + last ordinate sum of odd ordinates sum of even ordinates

69.4 Parametric Equations

Circle centre (0, 0) radius r:

x = rcos θ y = rsin θ

Circle centre (a, b) radius r:

x = a + rcos θ y = b + rsin θ

607



My A Level Maths Notes

69.5 Vectors

Vector Equation:

   r = a + λp   Through A with direction p

   r = OA
→

+ λAB
→

    Through points A & B

   r = a + λ (b − a)

   r = (1 − λ) a + λb

Dot Product:

   p • q = | p | | q | cos θ

 ∴      cos θ =
p • q

| p | | q |

  | OQ
→

 | = |( )| = a2 + b2 + c2

a

b

c

a • b = ( ) • ( ) = ( ) = (ax × bx) + (ay × by) + (az × bz) = axbx + ayby + azbz

ax

ay

az

bx

by

bz

axbx

ayby

azbz

θ = 90° ⇒  cos θ = 0If 

 ∴  p • q = 0     if 2 vectors are perpendicular.

The inclusion of  in the equation brings some useful results:cos θ

j If p and q are parallel then  and θ = 0,  ∴ cos θ = 1 p • q = | p | | q |
j If p and q are perpendicular then  and θ = 90,  ∴ cos θ = 0 p • q = 0

j If the angle  is acute then  and θ cos θ > 0 p • q > 0

j If the angle  is between 90° & 180° then  and θ cos θ < 0 p • q < 0

j If , then either  or p and q are perpendicularp • q = 0 | p | = 0, | q | = 0

j Recall that   (2nd quadrant)cos θ = − cos (180 − θ)

Note also that:

  i • j = 0 i • k = 0 j • k = 0       (unit vectors perpendicular)

  i • i = 1 j • j = 1 k • k = 1       (unit vectors parallel)

       p • q = q • p       (commutative law)

  s • (p + q) = s • p + s • q        (distributive over vector addition)

         p • (kq) = (kp) • q = k (p • q)   (k is a scalar)
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70.1 Basic Trig Rules

 

Degrees 0 30 45 60 90 180 270 360

Radians 0 π
6

π
4

π
3

π
2 π 3π

2 2π

sin 0 1
2

1
2

3
2 1 0 −1 0

cos 1 3
2

1
2

1
2 0 −1 0 1

tan 0 1
3

1 3 AT 0 AT 0

sin2 0 1
4

1
2

3
4 1

cos2 1 3
4

1
2

1
4 0

tan2 0 1
3 1 3 ND

Where AT means function approaches an asymtote and ND means ‘not defined’.

360° = 2π   1 =
180

π
≈ 57·3°radians radian

  cos x = sin x =
1

2
  tan 30 =

1

3
Examples:

 SOHCAHTOARecall:

     sin x =
opposite

hypotenuse

     cos x =
adjacent

hypotenuse

     tan x =
opposite

adjacent

     tan x =
sin x
cos x

    cosec x =
1

sin x
 sec x =

1

cos x
 cot x =

1

tan x

   sin α = cos β tan α = cot β sec α = cosec β

   cos α = sin β cot α = tan β cosec α = sec β

 α + β = 90° β = 90° − αwhere

    sin (θ) = cos (90° − θ)  cos (θ) = sin (90° − θ)

    sin (−θ) = −sin θ      cosec (−θ) = −cosec θ

    cos (−θ) = cos θ       sec (−θ) = sec θ

    tan (−θ) = −tan θ     cot (−θ) = −cot θ
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Second quadrant

    sin θ = sin (180° − θ)   cosec θ = cosec (180° − θ)

    cos θ = − cos (180° − θ)     sec θ = −sec (180° − θ)

    tan θ = −tan (180° − θ)      cot θ = − cot (180° − θ)

Third quadrant

    sin θ = −sin (θ − 180°)    cosec θ = − cosec (θ − 180°)

    cos θ = − cos (θ − 180°)  sec θ = −sec (θ − 180°)

    tan θ = tan (θ − 180°)     cot θ = cot (θ − 180°)

Fourth quadrant

    sin θ = −sin (360° − θ)    cosec θ = − cosec (360° − θ)

    cos θ = cos (360° − θ)     sec θ = sec (360° − θ)

    tan θ = − tan (360° − θ)  cot θ = − cot (360° − θ)

70.2 General Trig Solutions

j Cosine

j The principal value (PV) of  is as per your calculator where cos θ = k θ =  cos −1k

j A second solution (SV) is found at θ = 360 −  cos −1k  (θ = 2π −  cos −1k)

j Thereafter, add or subtract multiples of 360° (or )2π

j k valid only for −1 ≤ k ≤ 1

j Sine

j The principal value (PV) of  is as per your calculator where sin θ = k θ =  sin−1k

j A second solution (SV) is found at θ = 180 −  sin−1k  (θ = π −  sin−1k)

j Thereafter, add or subtract multiples of 360° (or )2π

j k valid only for −1 ≤ k ≤ 1

j Tan

j The principal value (PV) of  is as per your calculator where tan θ = k θ =  tan−1k

j A second solution (SV) is found at θ = 180 +  tan−1k  (θ = π +  tan−1k)

j Thereafter, add or subtract multiples of 360° (or )2π

j k valid for k ∈ R

70.3 Sine & Cosine Rules

     
a

sin A
=

b

sin B
=

c

sin B
Sine rule:

     a
2 = b

2 + c
2 − 2bc cos ACosine rule:

       cos A =
b2 + c2 − a2

2bc

  A =
1

2
ab sin C =

1

2
bh (Half  base × vert height)  Area of a triangle:
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70.4 Trig Identities

70.4.1 Trig Identities

   sin θ ≡ cos (1

2
π − θ)  sin x = cos (90° − x)

   cos θ ≡ sin (1

2
π − θ)  cos x = sin (90° − x)

   tan θ ≡
sin θ
cos θ

70.4.2 Pythagorean Identities

   cos
2 θ + sin

2 θ ≡ 1        (1)

   1 + cot
2 θ ≡ cosec

2 θ   (  sin
2 θ)Division of (1) by

   1 + tan
2 θ ≡ sec

2 θ        ( cos
2 θ)Division of (1) by 

70.4.3 Compound Angle (Addition) Identities

   sin (A ± B) ≡ sin A cos B ± cos A sin B

   cos (A ± B) ≡ cos A cos B ∓ sin A sin B

   tan (A ± B) ≡
tan A ± tan B

1 ∓ tan A tan B

70.4.4 Double Angle Identities

   sin 2A ≡ 2 sin A cos A

   cos 2A ≡ cos
2
A − sin

2
A

    ≡ 2 cos
2
A − 1     (sin

2 θ = 1 − cos
2 θ)

    ≡ 1 − 2sin
2
A  (cos

2 θ = 1 − sin
2 θ)

   tan 2A ≡
2tan A

1 − tan2A

70.4.5 Triple Angle Identities

   sin 3A ≡ 3sin A − 4sin
3
A

   cos 3A ≡ 4cos
3
A − 3cos A

   tan 3A ≡
3tan A − tan3A

1 − 3tan2A
 

70.4.6 Half Angle Identities

   cos
2 

A

2
≡

1

2
(1 + cos A)

   sin
2 

A

2
≡

1

2
(1 + cos A)
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70.4.7 Factor formulæ:

Sum to Product rules:

   sin A + sin B = 2 sin (A + B

2 )  cos (A − B

2 )
   sin A − sin B = 2 cos (A + B

2 )  sin (A − B

2 )
   cos A + cos B = 2 cos (A + B

2 )  cos (A − B

2 )
   cos A − cos B = −2 sin (A + B

2 )  sin (A − B

2 )
     cos A − cos B = 2 sin (A + B

2 )  sin (B − A

2 )  Note the gotcha in the signsOr

Alternative format:

   sin (A + B) + sin (A − B) = 2sin A cos B

   sin (A + B) − sin (A − B) = 2cos A sin B

   cos (A + B) + cos (A − B) = 2cos A cos B

   cos (A + B) − cos (A − B) = −2sin A sin B

Product to Sum rules:

   2sin A cos B = sin (A + B) + sin (A − B)
   2cos A sin B = sin (A + B) − sin (A − B)
   2cos A cos B = cos (A + B) + cos (A − B)
   − 2sin A sin B = cos (A + B) − cos (A − B)

70.4.8 Small t Identities

 t = tan ½θIf

   sin θ ≡
2t

1 + t2

   cos θ ≡
1 − t2

1 + t2

   tan θ ≡
2t

1 − t2

70.4.9 Small Angle Approximations

   sin θ ≈ θ

   tan θ ≈ θ

   cos θ ≈ 1 −
θ2

2

 in radians!!!!!!!θ
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70.5 Harmonic (Wave) Form: a cos x + b sin x

   a sin x ± b cos x ≡ R sin (x ± α)

   a cos x ± b sin x ≡ R cos (x ∓ α)  (watch the signs)

   R = a2 + b2 R cos α = a R sin α = b

    tan α =
b

a
  0 < a <

π
2

   cos α =
a

a2 + b2
  sin α =

b

a2 + b2

Recall

   sin (A ± B) ≡ sin A cos B ± cos A sin B

   cos (A ± B) ≡ cos A cos B ∓ sin A sin B

70.6 Formulæ for integrating cos A cos B, sin A cos B, & sin A sin B

   2 sin A cos B ≡ sin (A − B) + sin (A + B)

   2 cos A cos B ≡ cos (A − B) + cos (A + B)

   2 sin A sin B ≡ cos (A − B) − cos (A + B)

   2 sin A cos A ≡ sin 2A
 

   2 cos
2 A ≡ 1 + cos 2A

   2 sin
2 A ≡ 1 − cos 2A

70.7 For the Avoidance of Doubt

The expressions  and  are not the same.sin−1 θ (sin θ)−1

 and is the inverse of  in the same way that  is the inverse of .sin−1 θ ≡ arcsin θ sin θ f −1 (x) f (x)

 is the reciprocal of  i.e.  (sin θ)−1 sin θ (sin θ)−1 =  1
sin θ

The confusion is made worse by the fact that we use: .sin2 θ = (sin θ)2
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70.8 Geometry

70.8.1 Straight Lines

Equation of straight line

     y = mx + c

     y − y1 = m (x − x1)  (x1, y1)    Line thro’ 

     m1m2 = −1

     
y − y1

y2 − y1

=
x − x1

x2 − x1

  (x1, y1) , (x2, y2)Line thro’ 

 D = (x2 − x1)2 + (y2 − y1)2Dist between 2 points

 M = (x2 − x1

2
,

 y2 − y1

2 )Mid point co-ordinates of a line

70.8.2 Equation of a Circle

     x
2 + y

2 + 2gx + 2f y + c = 0

= (−g, −f )  = (g2 + f 2 − c)Circle centre radius

     (x − x1)
2 + (y2 − y1)2 = r

2

70.8.3 

  180° = π radians

  = rθ           L =
πrθ
180

 (θ )Arc length in degrees

  = 2r sin 
θ
2

   (θ )Length of chord in degreeas or radians

  = ½ r2θ    (θ )     A =
πr2θ
360

 (θ )Area of sector in radians in degrees

  = ½ r2 (θ − sin θ)  (θ )Area of segment in degreeas or radians

70.8.4 Areas

  A =
1

2
ab sin C =

1

2
bh (Half  base × vertical height)  Area of a triangle:

     A =
1

2
r

2θ   Area of a sector: ( in radians)θ 

        l = rθ        Arc length: ( in radians)θ 
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71.1 Log & Exponent Rules Summarised

Exponents Logarithms

N = bx logb N = x b > 0

b0 = 1 logb 1 = 0

b1 = b logb b = 1

aman = a(m + n) loga (MN) = loga M + loga N

am

an
= a(m − n) loga (M

N ) = loga M − loga N

1

an
= a(−n) loga ( 1

N ) = −loga N

n
m = m

1
n loga n M =

1

n
 loga M

(am)n = a(mn) loga Mn = n loga M

(am)
1
n = a

(m
n )

loga M
1
n = 1

n  loga M

Change of  base ⇒ loga N =
logb N
logb a

loga b =
1

logb a

a

b
= (b

a)−1
ln

a

b
= −ln

b

a

a
logam = m

a
logax = x loga (ax) = x

eln x = x ln ex = x

ea ln x = xa a ln ex = ax ∗

Tips:

To solve problems like  take logs on both sides first.ax = b

Note:

log x ⇔ log10 x & ln x ⇔ lne x

71.2 Handling Exponentials

e
ax + c = e

ax.ec

   ec = A  e
ax + c = A eaxIf then:  
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71.3 Heinous Howlers

Don’t make up your own rules! 

j  is not the same as .  Study the above table and you’ll find that there’s nothing

you can do to split up  or .

log (x + y) log x + log y
log (x + y) log (x − y)

j   is not the same as . When you divide two logs to the same base, you are in fact using the

change-of-base formula backwards. Note that  , NOT !

log (x)
log (y) log (x

y)
log (x)
log (y) = logy (x) log (x

y)
j  is not the same as . There’s really not much you can do with the product of two

logs when they have the same base.

(log x) (log y) log (xy)

Handling logs causes many problems, here are a few to avoid.

1 ln (y + 2) = ln (4x − 5) + ln 3

 (y + 2) ≠ (4x − 5) +  3You cannot just remove all the ln’s so:

 ln (y + 2) = ln [3 (4x − 5)]To solve, put the RHS into the form of a single log first:

∴ (y + 2) = 3 (4x − 5)

2 ln (y + 2) = 2 ln x

 (y + 2) ≠ 2xYou cannot just remove all the ln’s so:

 ln (y + 2) = ln x2To solve, put the RHS into the form of a single log first:

∴ (y + 2) = x
2

3 ln (y + 2) = x
2 + 3x

 (y + 2) ≠ e
x2

+ e
3xYou cannot convert to exponential form term by terrm like this:

 (y + 2) = e
x2 + 3xTo solve, raise e to the whole of the RHS :
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72.1 Differentiation

General differential of a function:

   y = [ f (x)]n
⇒

dy

dx
= n f ′ (x) [ f (x)]n − 1

Inverse Rule:

   
dy

dx
=

1
dx
dy

Chain Rule:

   
dy

dx
=

dy

du
×

du

dx

Product Rule: 

      y = uv          y = f (x) g (x)

   
dy

dx
= u

dv

dx
+ v

du

dx
    

dy

dx
= f (x) g′ (x) − f ′ (x) g (x)

 Quotient Rule: 

      y =
u

v
         y =

f (x)
g (x)

   
dy

dx
=

vdu
dx − udv

dx

v2
    

dy

dx
=

f ′ (x) g (x) − f (x) g′ (x)
{g (x)}2

  ∗

Trig Rules:

   y = sin
n
x ⇒

dy

dx
= n sin

n − 1
x cos x

   y = cos
n
x ⇒

dy

dx
= − n cos

n − 1
x sin x

   y = tan
n
x ⇒

dy

dx
= n tan

n − 1
x sec

2
x 

   y = a
x ⇒

dy

dx
= a

x ln a
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72.2 Integration

Standard integrals (useful for substitution or by inspection):

   ∫ f (ax + b)  dx =
1

a
 F (ax + b) + c

   ∫ f ′ (x) [f (x)]n
dx =

1

n + 1
[f (x)]n + 1 + c

   ∫
f ′ (x)
f (x)

 dx = ln | f (x)| + c

   ∫ f ′ (x) e
f (x)

dx = e
f (x) + c

   ∫ f ′ (x)  cos f (x) dx = sin f (x) + c

   ∫ f ′ (x)  sin f (x) dx = − cos f (x) + c

   ∫ f ′ (x)  tan f (x) dx = ln | sec f (x)| + c etc

By Parts: 

   ∫
b

a

u 
dv

dx
 dx = [uv]b

a − ∫
b

a

v 
du

dx
 dx       ∗

Vol of revolution:

V = π ∫
b

a

(radius)2
dxBasic Vol of revolution: 

V = π ∫
b

a

y
2 dx  a & b x limitsx-axis vol of revolution: x-axis are 

V = π ∫
b

a

x
2 dy   a & b y limitsy-axis vol of revolution: y-axis are 

72.3 Differential Equations

   
dy

dx
= xy

   
1

y
 
dy

dx
= x

   ∫
1

y
 
dy

dx
 dx = ∫ x dx

   ∫
1

y
  dy = ∫ x dx

   ln | y | =
1

2
x

2 + c

   e
ln y = e

1
2x2 + c

   y = e
1
2x2

e
c

   y = Ae
1
2x2
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Function  f (x) Dif f erential  dy
dx = f ′ (x)

a      0

xn      nxn − 1

ex     ex

eax     aeax

ef (x)     f ′ (x) ef (x)

sin x     cos x

cos x − sin x

tan x     sec2x

sin kx     k cos kx

cos kx − k sin kx

tan kx     k sec2 kx ∗

sin f (x)     f ′ (x) cos f (x)

cos f (x) − f ′ (x) sin f (x)

tan f (x)     f ′ (x) sec2 f (x)

cot x − cosec2x ∗

cosec x − cosec x cot x ∗

sec x     sec x tan x ∗

For all trig: x  in radians

ln x     
1

x
                  (x > 0)

ln ax
1

x
                   (x > 0)

ln f (x)    
f ′ (x)
f (x)

u v    uv′ + vu′

u

v
   

vu′ − uv′
v2 ∗

  y = f (x) Integral ∫ f (x) dx = F (x) + c

a    ax + c

xn    
xn + 1

n + 1
+ c                  (n ≠ −1)

ex    ex + c

eax    1a eax + c                       (a ≠ 0)

sin x − cos x + c

cos x     sin x + c

tan x     ln | sec x | + c ∗

tan x − ln | cos x | + c

sin kx − 
1

k
 cos kx + c

cos kx    
1

k
 sin kx + c

cos (kx + n)   
1

k
 sin (kx + n) + c

tan kx    
1

k
 ln | sec kx | + c

cot x     ln | sin x | + c ∗

cosec x cot x − cosec x + c

sec x tan x     sec x + c

cosec x     ln | tan1
2x | + c ∗

cosec x − ln | cosec x + cot x | + c ∗

sec x     ln | sec x + tan x | + c ∗

sec x     ln | tan (1
2x + 1

4π)| + c ∗

sec2 kx     1
k

 tan kx + c ∗

cosec2x − cot x + c

1

x
    ln | x | + C                 (x ≠ 0)

ln x     x ln (x) − x + C

u v′     uv − ∫ u′v dx + C

(ax + b)
(ax + b)n + 1

a (n + 1)
+ C      (n ≠ −1)

ax     
 ax

ln a
+ C
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Function  y = f (x) Dif f erential dy
dx = f ′ (x)

sin−1 x     
1

1 − x2
∗

cos −1 x − 
1

1 − x2
∗

tan−1 x      
1

x2 + 1
∗

sin−1  ( xa )      
1

a2 − x2

cos −1  ( xa ) − 
1

a2 − x2

tan −1  ( xa )     
1

x2 + a2

General differential of a function:

 y = ax
n  ⇒

dy

dx
= ax

n − 1

 y = [ f (x)]n
 ⇒

dy

dx
= n f ′ (x) [ f (x)]n − 1

  
dy

dx
=

1
dx
dy

 
dy

dx
=

dy

du
×

du

dx
Chain Rule:

y = uv

   
dy

dx
= u

dv

dx
+ v

du

dx
Product Rule: 

y =
u

v

   
dy

dx
=

vdu
dx

− udv
dx

v2 Quotient Rule: 

y = sin
n
x ⇒

dy

dx
= n sin

n − 1
x cos x

y = cos
n
x ⇒

dy

dx
= − n cos

n − 1
x sin x

y = tan
n
x ⇒

dy

dx
= n tan

n − 1
x sec

2
x 

y = a
x ⇒

dy

dx
= a

x ln a

          y = f (x)        Integral ∫ f (x) dx

f ′ (x)
f (x)

ln |  f (x)  | + C

1

ax + b
1
a ln | ax + b | + C

1

x2 − a2

1

2a
 ln | x − a

x + a
 | + C ∗

1

a2 − x2

1

2a
 ln | a + x

a − x
 | + C ∗

1

a2 − x2
sin−1 ( xa ) + C ∗

1

x2 + a2

1

a
 tan−1 ( xa ) + C ∗

1

x2 + 1
tan−1 x + C

Standard integrals (useful for substitution or by
inspection):

∫ ax
n
dx =

a

n + 1
x

n + 1 + C

∫
 b

a

ax
n
dx = − ∫

 a

b

ax
n
dx

∫ f ′ (x) [f (x)]n
dx =

1

n + 1
[f (x)]n + 1 + C

∫
f ′ (x)
f (x)

 dx = ln | f (x)| + C

∫ f ′ (x) e
f (x)

dx = e
f (x) + C

∫ f ′ (x)  cos f (x) dx = sin f (x) + C

∫ f ′ (x)  sin f (x) dx = − cos f (x) + C

∫ f ′ (x)  tan f (x) dx = ln | sec f (x)| + C etc

   ∫
b

a

u 
dv

dx
 dx = [uv]b

a − ∫
b

a

v 
du

dx
 dx ∗By Parts: 

V = π ∫
b

a

(radius)2
dxBasic Vol of revolution: 

V = π ∫
b

a

y
2 dx      x x-axis: vol of revolution: limits

V = π ∫
b

a

x
2 dy      y y-axis: vol of revolution: limits
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74 • Apdx • Integration Flow Chart

Product
of 2 terms?
(one in x)

Integrate normally

∫ f ′ (x) [ f (x)]n
dx

Form of Guess                          
and try differentiating

to check

[ f (x)]n + 1

∫ f ′ (x) e
f (x)

dx

Form of Guess                          
and try differentiating 

to check

e
f (x)

Substitution
required?

Let u=part in brackets.
Look for special cases 
such as trig expressions

Parts
required?

Integration by parts as normal.
Remember the special cases

such ln x.

Is it a
quotient

(fraction)?

Top a 
constant?

Can you use a
neg power?

If power is –1: use ln x

or

∫ (ax + b)n =
(ax + b)n + 1

a (a + 1)

Top
heavy

fraction?

Use long division to give 
whole number and proper

fraction

Substitution
required?

Partial
fractions?

Two terms
on top?

Let u=part in brackets

usually on the bottom.
(Denominator cannot be

factorised).

Usually works if 
denominator factorises. 

Integrate fractions separately.

Split into two fractions and
integrate separately.

Form of

⌠
⌡

f ′ (x)
 f (x)

 dx

Guess ln f(x)

and check details

Is it a trig?
Even power
of sin or cos

 only

tan ?

Odd power
of sin or cos

 only.

Use sin2x = 1– cos2x 

or vice versa to change all but
one of the powers then use a

substitution

or
∫ tan x dx = ln | sec x |

Standard
Integral?

(See formula
book)

Start

Look for clues in question

Change sin2 x  into

Change cos2 x  into

1
2

(1 − cos 2x)

1
2

(1 + cos 2x)

Y

Y Y

Y

Y

Y

Y

Y

YY

Y

Y

Y

Y

Y

Y

Y

Form ofIf n « 0 rearrange as 
Y ⌠

⌡

f ′ (x)
 f (x)

 dx
[ ]n

⌠
⌡

f ′ (x) dx f (x)
 

[ ] n−

= −ln cos x| |
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